|
import json
|
|
from argparse import ArgumentParser
|
|
|
|
from PIL import Image
|
|
|
|
import constants
|
|
from backend.controlnet import controlnet_settings_from_dict
|
|
from backend.device import get_device_name
|
|
from backend.models.gen_images import ImageFormat
|
|
from backend.models.lcmdiffusion_setting import DiffusionTask
|
|
from backend.upscale.tiled_upscale import generate_upscaled_image
|
|
from constants import APP_VERSION, DEVICE
|
|
from frontend.webui.image_variations_ui import generate_image_variations
|
|
from models.interface_types import InterfaceType
|
|
from paths import FastStableDiffusionPaths, ensure_path
|
|
from state import get_context, get_settings
|
|
from utils import show_system_info
|
|
|
|
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
|
|
parser.add_argument(
|
|
"-s",
|
|
"--share",
|
|
action="store_true",
|
|
help="Create sharable link(Web UI)",
|
|
required=False,
|
|
)
|
|
group = parser.add_mutually_exclusive_group(required=False)
|
|
group.add_argument(
|
|
"-g",
|
|
"--gui",
|
|
action="store_true",
|
|
help="Start desktop GUI",
|
|
)
|
|
group.add_argument(
|
|
"-w",
|
|
"--webui",
|
|
action="store_true",
|
|
help="Start Web UI",
|
|
)
|
|
group.add_argument(
|
|
"-a",
|
|
"--api",
|
|
action="store_true",
|
|
help="Start Web API server",
|
|
)
|
|
group.add_argument(
|
|
"-m",
|
|
"--mcp",
|
|
action="store_true",
|
|
help="Start MCP(Model Context Protocol) server",
|
|
)
|
|
group.add_argument(
|
|
"-r",
|
|
"--realtime",
|
|
action="store_true",
|
|
help="Start realtime inference UI(experimental)",
|
|
)
|
|
group.add_argument(
|
|
"-v",
|
|
"--version",
|
|
action="store_true",
|
|
help="Version",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-b",
|
|
"--benchmark",
|
|
action="store_true",
|
|
help="Run inference benchmark on the selected device",
|
|
)
|
|
parser.add_argument(
|
|
"--lcm_model_id",
|
|
type=str,
|
|
help="Model ID or path,Default stabilityai/sd-turbo",
|
|
default="stabilityai/sd-turbo",
|
|
)
|
|
parser.add_argument(
|
|
"--openvino_lcm_model_id",
|
|
type=str,
|
|
help="OpenVINO Model ID or path,Default rupeshs/sd-turbo-openvino",
|
|
default="rupeshs/sd-turbo-openvino",
|
|
)
|
|
parser.add_argument(
|
|
"--prompt",
|
|
type=str,
|
|
help="Describe the image you want to generate",
|
|
default="",
|
|
)
|
|
parser.add_argument(
|
|
"--negative_prompt",
|
|
type=str,
|
|
help="Describe what you want to exclude from the generation",
|
|
default="",
|
|
)
|
|
parser.add_argument(
|
|
"--image_height",
|
|
type=int,
|
|
help="Height of the image",
|
|
default=512,
|
|
)
|
|
parser.add_argument(
|
|
"--image_width",
|
|
type=int,
|
|
help="Width of the image",
|
|
default=512,
|
|
)
|
|
parser.add_argument(
|
|
"--inference_steps",
|
|
type=int,
|
|
help="Number of steps,default : 1",
|
|
default=1,
|
|
)
|
|
parser.add_argument(
|
|
"--guidance_scale",
|
|
type=float,
|
|
help="Guidance scale,default : 1.0",
|
|
default=1.0,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--number_of_images",
|
|
type=int,
|
|
help="Number of images to generate ,default : 1",
|
|
default=1,
|
|
)
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
help="Seed,default : -1 (disabled) ",
|
|
default=-1,
|
|
)
|
|
parser.add_argument(
|
|
"--use_openvino",
|
|
action="store_true",
|
|
help="Use OpenVINO model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use_offline_model",
|
|
action="store_true",
|
|
help="Use offline model",
|
|
)
|
|
parser.add_argument(
|
|
"--clip_skip",
|
|
type=int,
|
|
help="CLIP Skip (1-12), default : 1 (disabled) ",
|
|
default=1,
|
|
)
|
|
parser.add_argument(
|
|
"--token_merging",
|
|
type=float,
|
|
help="Token merging scale, 0.0 - 1.0, default : 0.0",
|
|
default=0.0,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use_safety_checker",
|
|
action="store_true",
|
|
help="Use safety checker",
|
|
)
|
|
parser.add_argument(
|
|
"--use_lcm_lora",
|
|
action="store_true",
|
|
help="Use LCM-LoRA",
|
|
)
|
|
parser.add_argument(
|
|
"--base_model_id",
|
|
type=str,
|
|
help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
|
|
default="Lykon/dreamshaper-8",
|
|
)
|
|
parser.add_argument(
|
|
"--lcm_lora_id",
|
|
type=str,
|
|
help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
|
|
default="latent-consistency/lcm-lora-sdv1-5",
|
|
)
|
|
parser.add_argument(
|
|
"-i",
|
|
"--interactive",
|
|
action="store_true",
|
|
help="Interactive CLI mode",
|
|
)
|
|
parser.add_argument(
|
|
"-t",
|
|
"--use_tiny_auto_encoder",
|
|
action="store_true",
|
|
help="Use Tiny AutoEncoder for TAESD/TAESDXL/TAEF1",
|
|
)
|
|
parser.add_argument(
|
|
"-f",
|
|
"--file",
|
|
type=str,
|
|
help="Input image for img2img mode",
|
|
default="",
|
|
)
|
|
parser.add_argument(
|
|
"--img2img",
|
|
action="store_true",
|
|
help="img2img mode; requires input file via -f argument",
|
|
)
|
|
parser.add_argument(
|
|
"--batch_count",
|
|
type=int,
|
|
help="Number of sequential generations",
|
|
default=1,
|
|
)
|
|
parser.add_argument(
|
|
"--strength",
|
|
type=float,
|
|
help="Denoising strength for img2img and Image variations",
|
|
default=0.3,
|
|
)
|
|
parser.add_argument(
|
|
"--sdupscale",
|
|
action="store_true",
|
|
help="Tiled SD upscale,works only for the resolution 512x512,(2x upscale)",
|
|
)
|
|
parser.add_argument(
|
|
"--upscale",
|
|
action="store_true",
|
|
help="EDSR SD upscale ",
|
|
)
|
|
parser.add_argument(
|
|
"--custom_settings",
|
|
type=str,
|
|
help="JSON file containing custom generation settings",
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--usejpeg",
|
|
action="store_true",
|
|
help="Images will be saved as JPEG format",
|
|
)
|
|
parser.add_argument(
|
|
"--noimagesave",
|
|
action="store_true",
|
|
help="Disable image saving",
|
|
)
|
|
parser.add_argument(
|
|
"--imagequality", type=int, help="Output image quality [0 to 100]", default=90
|
|
)
|
|
parser.add_argument(
|
|
"--lora",
|
|
type=str,
|
|
help="LoRA model full path e.g D:\lora_models\CuteCartoon15V-LiberteRedmodModel-Cartoon-CuteCartoonAF.safetensors",
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--lora_weight",
|
|
type=float,
|
|
help="LoRA adapter weight [0 to 1.0]",
|
|
default=0.5,
|
|
)
|
|
parser.add_argument(
|
|
"--port",
|
|
type=int,
|
|
help="Web server port",
|
|
default=8000,
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.version:
|
|
print(APP_VERSION)
|
|
exit()
|
|
|
|
|
|
print("FastSD CPU - ", APP_VERSION)
|
|
show_system_info()
|
|
print(f"Using device : {constants.DEVICE}")
|
|
|
|
|
|
if args.webui:
|
|
app_settings = get_settings()
|
|
else:
|
|
app_settings = get_settings()
|
|
|
|
print(f"Output path : {app_settings.settings.generated_images.path}")
|
|
ensure_path(app_settings.settings.generated_images.path)
|
|
|
|
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
|
|
print(
|
|
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
|
|
)
|
|
print(
|
|
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
|
|
)
|
|
print(
|
|
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
|
|
)
|
|
|
|
if args.noimagesave:
|
|
app_settings.settings.generated_images.save_image = False
|
|
else:
|
|
app_settings.settings.generated_images.save_image = True
|
|
|
|
app_settings.settings.generated_images.save_image_quality = args.imagequality
|
|
|
|
if not args.realtime:
|
|
|
|
from backend.upscale.upscaler import upscale_image
|
|
from frontend.cli_interactive import interactive_mode
|
|
|
|
if args.gui:
|
|
from frontend.gui.ui import start_gui
|
|
|
|
print("Starting desktop GUI mode(Qt)")
|
|
start_gui(
|
|
[],
|
|
app_settings,
|
|
)
|
|
elif args.webui:
|
|
from frontend.webui.ui import start_webui
|
|
|
|
print("Starting web UI mode")
|
|
start_webui(
|
|
args.share,
|
|
)
|
|
elif args.realtime:
|
|
from frontend.webui.realtime_ui import start_realtime_text_to_image
|
|
|
|
print("Starting realtime text to image(EXPERIMENTAL)")
|
|
start_realtime_text_to_image(args.share)
|
|
elif args.api:
|
|
from backend.api.web import start_web_server
|
|
|
|
start_web_server(args.port)
|
|
elif args.mcp:
|
|
from backend.api.mcp_server import start_mcp_server
|
|
|
|
start_mcp_server(args.port)
|
|
else:
|
|
context = get_context(InterfaceType.CLI)
|
|
config = app_settings.settings
|
|
|
|
if args.use_openvino:
|
|
config.lcm_diffusion_setting.openvino_lcm_model_id = args.openvino_lcm_model_id
|
|
else:
|
|
config.lcm_diffusion_setting.lcm_model_id = args.lcm_model_id
|
|
|
|
config.lcm_diffusion_setting.prompt = args.prompt
|
|
config.lcm_diffusion_setting.negative_prompt = args.negative_prompt
|
|
config.lcm_diffusion_setting.image_height = args.image_height
|
|
config.lcm_diffusion_setting.image_width = args.image_width
|
|
config.lcm_diffusion_setting.guidance_scale = args.guidance_scale
|
|
config.lcm_diffusion_setting.number_of_images = args.number_of_images
|
|
config.lcm_diffusion_setting.inference_steps = args.inference_steps
|
|
config.lcm_diffusion_setting.strength = args.strength
|
|
config.lcm_diffusion_setting.seed = args.seed
|
|
config.lcm_diffusion_setting.use_openvino = args.use_openvino
|
|
config.lcm_diffusion_setting.use_tiny_auto_encoder = args.use_tiny_auto_encoder
|
|
config.lcm_diffusion_setting.use_lcm_lora = args.use_lcm_lora
|
|
config.lcm_diffusion_setting.lcm_lora.base_model_id = args.base_model_id
|
|
config.lcm_diffusion_setting.lcm_lora.lcm_lora_id = args.lcm_lora_id
|
|
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
|
|
config.lcm_diffusion_setting.lora.enabled = False
|
|
config.lcm_diffusion_setting.lora.path = args.lora
|
|
config.lcm_diffusion_setting.lora.weight = args.lora_weight
|
|
config.lcm_diffusion_setting.lora.fuse = True
|
|
if config.lcm_diffusion_setting.lora.path:
|
|
config.lcm_diffusion_setting.lora.enabled = True
|
|
if args.usejpeg:
|
|
config.generated_images.format = ImageFormat.JPEG.value.upper()
|
|
if args.seed > -1:
|
|
config.lcm_diffusion_setting.use_seed = True
|
|
else:
|
|
config.lcm_diffusion_setting.use_seed = False
|
|
config.lcm_diffusion_setting.use_offline_model = args.use_offline_model
|
|
config.lcm_diffusion_setting.clip_skip = args.clip_skip
|
|
config.lcm_diffusion_setting.token_merging = args.token_merging
|
|
config.lcm_diffusion_setting.use_safety_checker = args.use_safety_checker
|
|
|
|
|
|
custom_settings = {}
|
|
if args.custom_settings:
|
|
with open(args.custom_settings) as f:
|
|
custom_settings = json.load(f)
|
|
|
|
|
|
|
|
config.lcm_diffusion_setting.controlnet = None
|
|
controlnet_settings_from_dict(
|
|
config.lcm_diffusion_setting,
|
|
custom_settings,
|
|
)
|
|
|
|
|
|
if args.interactive:
|
|
|
|
config.lcm_diffusion_setting.lora.fuse = False
|
|
interactive_mode(config, context)
|
|
|
|
|
|
if args.img2img and args.file != "":
|
|
config.lcm_diffusion_setting.init_image = Image.open(args.file)
|
|
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.image_to_image.value
|
|
elif args.img2img and args.file == "":
|
|
print("Error : You need to specify a file in img2img mode")
|
|
exit()
|
|
elif args.upscale and args.file == "" and args.custom_settings == None:
|
|
print("Error : You need to specify a file in SD upscale mode")
|
|
exit()
|
|
elif (
|
|
args.prompt == ""
|
|
and args.file == ""
|
|
and args.custom_settings == None
|
|
and not args.benchmark
|
|
):
|
|
print("Error : You need to provide a prompt")
|
|
exit()
|
|
|
|
if args.upscale:
|
|
|
|
output_path = FastStableDiffusionPaths.get_upscale_filepath(
|
|
args.file,
|
|
2,
|
|
config.generated_images.format,
|
|
)
|
|
result = upscale_image(
|
|
context,
|
|
args.file,
|
|
output_path,
|
|
2,
|
|
)
|
|
|
|
elif args.sdupscale:
|
|
if args.use_openvino:
|
|
config.lcm_diffusion_setting.strength = 0.3
|
|
upscale_settings = None
|
|
if custom_settings != {}:
|
|
upscale_settings = custom_settings
|
|
filepath = args.file
|
|
output_format = config.generated_images.format
|
|
if upscale_settings:
|
|
filepath = upscale_settings["source_file"]
|
|
output_format = upscale_settings["output_format"].upper()
|
|
output_path = FastStableDiffusionPaths.get_upscale_filepath(
|
|
filepath,
|
|
2,
|
|
output_format,
|
|
)
|
|
|
|
generate_upscaled_image(
|
|
config,
|
|
filepath,
|
|
config.lcm_diffusion_setting.strength,
|
|
upscale_settings=upscale_settings,
|
|
context=context,
|
|
tile_overlap=32 if config.lcm_diffusion_setting.use_openvino else 16,
|
|
output_path=output_path,
|
|
image_format=output_format,
|
|
)
|
|
exit()
|
|
|
|
elif args.img2img and args.prompt == "":
|
|
for i in range(0, args.batch_count):
|
|
generate_image_variations(
|
|
config.lcm_diffusion_setting.init_image, args.strength
|
|
)
|
|
else:
|
|
if args.benchmark:
|
|
print("Initializing benchmark...")
|
|
bench_lcm_setting = config.lcm_diffusion_setting
|
|
bench_lcm_setting.prompt = "a cat"
|
|
bench_lcm_setting.use_tiny_auto_encoder = False
|
|
context.generate_text_to_image(
|
|
settings=config,
|
|
device=DEVICE,
|
|
)
|
|
|
|
latencies = []
|
|
|
|
print("Starting benchmark please wait...")
|
|
for _ in range(3):
|
|
context.generate_text_to_image(
|
|
settings=config,
|
|
device=DEVICE,
|
|
)
|
|
latencies.append(context.latency)
|
|
|
|
avg_latency = sum(latencies) / 3
|
|
|
|
bench_lcm_setting.use_tiny_auto_encoder = True
|
|
|
|
context.generate_text_to_image(
|
|
settings=config,
|
|
device=DEVICE,
|
|
)
|
|
latencies = []
|
|
for _ in range(3):
|
|
context.generate_text_to_image(
|
|
settings=config,
|
|
device=DEVICE,
|
|
)
|
|
latencies.append(context.latency)
|
|
|
|
avg_latency_taesd = sum(latencies) / 3
|
|
|
|
benchmark_name = ""
|
|
|
|
if config.lcm_diffusion_setting.use_openvino:
|
|
benchmark_name = "OpenVINO"
|
|
else:
|
|
benchmark_name = "PyTorch"
|
|
|
|
bench_model_id = ""
|
|
if bench_lcm_setting.use_openvino:
|
|
bench_model_id = bench_lcm_setting.openvino_lcm_model_id
|
|
elif bench_lcm_setting.use_lcm_lora:
|
|
bench_model_id = bench_lcm_setting.lcm_lora.base_model_id
|
|
else:
|
|
bench_model_id = bench_lcm_setting.lcm_model_id
|
|
|
|
benchmark_result = [
|
|
["Device", f"{DEVICE.upper()},{get_device_name()}"],
|
|
["Stable Diffusion Model", bench_model_id],
|
|
[
|
|
"Image Size ",
|
|
f"{bench_lcm_setting.image_width}x{bench_lcm_setting.image_height}",
|
|
],
|
|
[
|
|
"Inference Steps",
|
|
f"{bench_lcm_setting.inference_steps}",
|
|
],
|
|
[
|
|
"Benchmark Passes",
|
|
3,
|
|
],
|
|
[
|
|
"Average Latency",
|
|
f"{round(avg_latency, 3)} sec",
|
|
],
|
|
[
|
|
"Average Latency(TAESD* enabled)",
|
|
f"{round(avg_latency_taesd, 3)} sec",
|
|
],
|
|
]
|
|
print()
|
|
print(
|
|
f" FastSD Benchmark - {benchmark_name:8} "
|
|
)
|
|
print(f"-" * 80)
|
|
for benchmark in benchmark_result:
|
|
print(f"{benchmark[0]:35} - {benchmark[1]}")
|
|
print(f"-" * 80)
|
|
print("*TAESD - Tiny AutoEncoder for Stable Diffusion")
|
|
|
|
else:
|
|
for i in range(0, args.batch_count):
|
|
context.generate_text_to_image(
|
|
settings=config,
|
|
device=DEVICE,
|
|
)
|
|
|