Spaces:
Running
Running
import requests | |
import re | |
from collections import defaultdict | |
# Utilities related to loading in and working with models/specific models | |
from urllib.parse import urlparse | |
from accelerate.commands.estimate import check_has_model, create_empty_model | |
from accelerate.utils import compute_module_sizes, named_module_tensors | |
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError | |
def fetch_dictionary_content(model_id): | |
MODEL_URL = "https://huggingface.co/{model_id}/raw/main/config.json" | |
response = requests.get(MODEL_URL.format(model_id=model_id)) | |
# Check if the request was successful | |
if response.status_code == 200: | |
return response.json() # Parse the JSON content into a Python dictionary | |
else: | |
return None | |
def load_parameter(model_dict, cand_keys): | |
for k in cand_keys: | |
if k in model_dict: | |
return model_dict[k] | |
return 0 | |
# Reference: https://huggingface.co/spaces/hf-accelerate/model-memory-usage | |
def extract_from_url(name: str): | |
"Checks if `name` is a URL, and if so converts it to a model name" | |
is_url = False | |
try: | |
result = urlparse(name) | |
is_url = all([result.scheme, result.netloc]) | |
except Exception: | |
is_url = False | |
# Pass through if not a URL | |
if not is_url: | |
return name | |
else: | |
path = result.path | |
return path[1:] | |
def translate_llama2(text): | |
"Translates llama-2 to its hf counterpart" | |
if not text.endswith("-hf"): | |
return text + "-hf" | |
return text | |
def get_model(model_name: str, library: str, access_token: str): | |
"Finds and grabs model from the Hub, and initializes on `meta`" | |
if "meta-llama" in model_name: | |
model_name = translate_llama2(model_name) | |
if library == "auto": | |
library = None | |
model_name = extract_from_url(model_name) | |
try: | |
model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token) | |
except GatedRepoError: | |
raise RuntimeError( | |
f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. " | |
) | |
except RepositoryNotFoundError: | |
raise RuntimeError(f"Model `{model_name}` was not found on the Hub, please try another model name.") | |
except ValueError: | |
raise RuntimeError( | |
f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)" | |
) | |
except (RuntimeError, OSError) as e: | |
library = check_has_model(e) | |
if library != "unknown": | |
raise RuntimeError( | |
f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo." | |
) | |
raise RuntimeError( | |
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`" | |
) | |
except ImportError: | |
# hacky way to check if it works with `trust_remote_code=False` | |
model = create_empty_model( | |
model_name, library_name=library, trust_remote_code=False, access_token=access_token | |
) | |
except Exception as e: | |
raise RuntimeError( | |
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`" | |
) | |
return model | |
def get_module_tensors(model): | |
module_tensors = {} | |
for name, tensor in named_module_tensors(model, recurse=True): | |
module_tensors[name] = tensor.shape | |
return module_tensors | |
def classify_module(module_tensors): | |
# A dictionary to store counts for each generic layer type | |
module_classes = defaultdict(list) | |
# This function removes all numbers from a given string | |
def remove_numbers(s): | |
return re.sub(r'\d+', '', s) | |
# Loop through all named parameters of the model | |
for name in module_tensors: | |
# Remove numbers from the name | |
generic_name = remove_numbers(name) | |
generic_name = generic_name.replace('..', '.') | |
# If the name already exists in the dictionary, increase the count, else set it to 1 | |
module_classes[generic_name].append({name: module_tensors[name]}) | |
return module_classes | |
def get_module_tensors_matched(filter_fn, module_classes_dict): | |
matched = [] | |
for generic, module_list in module_classes_dict.items(): | |
if filter_fn(generic.lower()): | |
matched.extend([v for module in module_list for v in module.values()]) | |
return matched | |
if __name__ == '__main__': | |
import torch | |
model = get_model('NousResearch/Nous-Hermes-Llama2-13b', None, None) | |
module_tensors = get_module_tensors(model) | |
module_classes = classify_module(module_tensors) | |
sizes = compute_module_sizes(model, dtype=torch.int8) | |
size_dict = { | |
'attn':0, | |
'mlp':0, | |
'embed':0, | |
} | |
for k, v in sizes.items(): | |
for kk in size_dict: | |
if kk in k and 'weight' in k: | |
size_dict[kk] += v/1024**3 | |
print(sizes) |