Spaces:
Running
Running
Silvia Terragni
commited on
Commit
·
ce649db
1
Parent(s):
f1abd41
updated template
Browse files- app.py +8 -111
- home.py +11 -0
- image2text.py +0 -0
- text2image.py +106 -0
app.py
CHANGED
@@ -1,112 +1,9 @@
|
|
1 |
-
import io
|
2 |
-
import os
|
3 |
-
import requests
|
4 |
-
import zipfile
|
5 |
-
import natsort
|
6 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
7 |
-
from pathlib import Path
|
8 |
-
from stqdm import stqdm
|
9 |
import streamlit as st
|
10 |
-
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
@st.cache(hash_funcs={FlaxHybridCLIP: lambda _: None})
|
21 |
-
def get_model():
|
22 |
-
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian")
|
23 |
-
|
24 |
-
|
25 |
-
@st.cache(hash_funcs={transformers.models.bert.tokenization_bert_fast.BertTokenizerFast: lambda _: None})
|
26 |
-
def get_tokenizer():
|
27 |
-
return AutoTokenizer.from_pretrained("dbmdz/bert-base-italian-xxl-uncased", cache_dir="./", use_fast=True)
|
28 |
-
|
29 |
-
|
30 |
-
@st.cache(suppress_st_warning=True)
|
31 |
-
def download_images():
|
32 |
-
# from sentence_transformers import SentenceTransformer, util
|
33 |
-
img_folder = "photos/"
|
34 |
-
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
|
35 |
-
os.makedirs(img_folder, exist_ok=True)
|
36 |
-
|
37 |
-
photo_filename = "unsplash-25k-photos.zip"
|
38 |
-
if not os.path.exists(photo_filename): # Download dataset if does not exist
|
39 |
-
print(f"Downloading {photo_filename}...")
|
40 |
-
response = requests.get(f"http://sbert.net/datasets/{photo_filename}", stream=True)
|
41 |
-
total_size_in_bytes= int(response.headers.get('content-length', 0))
|
42 |
-
block_size = 1024 #1 Kb
|
43 |
-
progress_bar = stqdm(total=total_size_in_bytes) # , unit='iB', unit_scale=True
|
44 |
-
content = io.BytesIO()
|
45 |
-
for data in response.iter_content(block_size):
|
46 |
-
progress_bar.update(len(data))
|
47 |
-
content.write(data)
|
48 |
-
progress_bar.close()
|
49 |
-
z = zipfile.ZipFile(content)
|
50 |
-
# content.close()
|
51 |
-
print("Extracting the dataset...")
|
52 |
-
z.extractall(path=img_folder)
|
53 |
-
print("Done.")
|
54 |
-
|
55 |
-
|
56 |
-
@st.cache()
|
57 |
-
def get_image_features():
|
58 |
-
return jnp.load("static/features/features.npy")
|
59 |
-
|
60 |
-
|
61 |
-
def read_markdown_file(markdown_file):
|
62 |
-
return Path(markdown_file).read_text()
|
63 |
-
|
64 |
-
|
65 |
-
"""
|
66 |
-
|
67 |
-
# 👋 Ciao!
|
68 |
-
|
69 |
-
# CLIP Italian Demo
|
70 |
-
## HF-Flax Community Week
|
71 |
-
|
72 |
-
In this demo you can search for images in the Unsplash 25k Photos dataset.
|
73 |
-
|
74 |
-
🤌 Italian mode on! 🤌
|
75 |
-
|
76 |
-
"""
|
77 |
-
|
78 |
-
query = st.text_input("Insert an italian query text here...")
|
79 |
-
if query:
|
80 |
-
with st.spinner("Computing in progress..."):
|
81 |
-
model = get_model()
|
82 |
-
download_images()
|
83 |
-
|
84 |
-
image_features = get_image_features()
|
85 |
-
|
86 |
-
model = get_model()
|
87 |
-
tokenizer = get_tokenizer()
|
88 |
-
|
89 |
-
image_size = model.config.vision_config.image_size
|
90 |
-
|
91 |
-
val_preprocess = Compose(
|
92 |
-
[
|
93 |
-
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
94 |
-
CenterCrop(image_size),
|
95 |
-
ToTensor(),
|
96 |
-
Normalize(
|
97 |
-
(0.48145466, 0.4578275, 0.40821073),
|
98 |
-
(0.26862954, 0.26130258, 0.27577711),
|
99 |
-
),
|
100 |
-
]
|
101 |
-
)
|
102 |
-
|
103 |
-
dataset = utils.CustomDataSet("photos/", transform=val_preprocess)
|
104 |
-
|
105 |
-
image_paths = utils.find_image(
|
106 |
-
query, model, dataset, tokenizer, image_features, n=2
|
107 |
-
)
|
108 |
-
|
109 |
-
st.image(image_paths)
|
110 |
-
|
111 |
-
intro_markdown = read_markdown_file("introduction.md")
|
112 |
-
st.markdown(intro_markdown, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import image2text
|
3 |
+
import text2image
|
4 |
+
import home
|
5 |
+
|
6 |
+
PAGES = {"Home": home, "Text to Image": text2image, "Image to Text": image2text}
|
7 |
+
st.sidebar.title("Navigation")
|
8 |
+
page = st.sidebar.selectbox("Choose a task", list(PAGES.keys()))
|
9 |
+
PAGES[page].app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
home.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
|
5 |
+
def read_markdown_file(markdown_file):
|
6 |
+
return Path(markdown_file).read_text()
|
7 |
+
|
8 |
+
|
9 |
+
def app():
|
10 |
+
intro_markdown = read_markdown_file("introduction.md")
|
11 |
+
st.markdown(intro_markdown, unsafe_allow_html=True)
|
image2text.py
ADDED
File without changes
|
text2image.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import zipfile
|
5 |
+
import natsort
|
6 |
+
|
7 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
8 |
+
from stqdm import stqdm
|
9 |
+
import streamlit as st
|
10 |
+
from jax import numpy as jnp
|
11 |
+
import transformers
|
12 |
+
from transformers import AutoTokenizer
|
13 |
+
from torchvision.transforms import Compose, CenterCrop, Normalize, Resize, ToTensor
|
14 |
+
from torchvision.transforms.functional import InterpolationMode
|
15 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
16 |
+
|
17 |
+
import utils
|
18 |
+
|
19 |
+
|
20 |
+
@st.cache(hash_funcs={FlaxHybridCLIP: lambda _: None})
|
21 |
+
def get_model():
|
22 |
+
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian")
|
23 |
+
|
24 |
+
|
25 |
+
@st.cache(hash_funcs={transformers.models.bert.tokenization_bert_fast.BertTokenizerFast: lambda _: None})
|
26 |
+
def get_tokenizer():
|
27 |
+
return AutoTokenizer.from_pretrained("dbmdz/bert-base-italian-xxl-uncased", cache_dir="./", use_fast=True)
|
28 |
+
|
29 |
+
|
30 |
+
@st.cache(suppress_st_warning=True)
|
31 |
+
def download_images():
|
32 |
+
# from sentence_transformers import SentenceTransformer, util
|
33 |
+
img_folder = "photos/"
|
34 |
+
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
|
35 |
+
os.makedirs(img_folder, exist_ok=True)
|
36 |
+
|
37 |
+
photo_filename = "unsplash-25k-photos.zip"
|
38 |
+
if not os.path.exists(photo_filename): # Download dataset if does not exist
|
39 |
+
print(f"Downloading {photo_filename}...")
|
40 |
+
response = requests.get(f"http://sbert.net/datasets/{photo_filename}", stream=True)
|
41 |
+
total_size_in_bytes = int(response.headers.get('content-length', 0))
|
42 |
+
block_size = 1024 # 1 Kb
|
43 |
+
progress_bar = stqdm(total=total_size_in_bytes) # , unit='iB', unit_scale=True
|
44 |
+
content = io.BytesIO()
|
45 |
+
for data in response.iter_content(block_size):
|
46 |
+
progress_bar.update(len(data))
|
47 |
+
content.write(data)
|
48 |
+
progress_bar.close()
|
49 |
+
z = zipfile.ZipFile(content)
|
50 |
+
# content.close()
|
51 |
+
print("Extracting the dataset...")
|
52 |
+
z.extractall(path=img_folder)
|
53 |
+
print("Done.")
|
54 |
+
|
55 |
+
|
56 |
+
@st.cache()
|
57 |
+
def get_image_features():
|
58 |
+
return jnp.load("static/features/features.npy")
|
59 |
+
|
60 |
+
def app():
|
61 |
+
|
62 |
+
"""
|
63 |
+
|
64 |
+
# 👋 Ciao!
|
65 |
+
|
66 |
+
# CLIP Italian Demo
|
67 |
+
## HF-Flax Community Week
|
68 |
+
|
69 |
+
In this demo you can search for images in the Unsplash 25k Photos dataset.
|
70 |
+
|
71 |
+
🤌 Italian mode on! 🤌
|
72 |
+
|
73 |
+
"""
|
74 |
+
|
75 |
+
query = st.text_input("Insert an italian query text here...")
|
76 |
+
if query:
|
77 |
+
with st.spinner("Computing in progress..."):
|
78 |
+
model = get_model()
|
79 |
+
download_images()
|
80 |
+
|
81 |
+
image_features = get_image_features()
|
82 |
+
|
83 |
+
model = get_model()
|
84 |
+
tokenizer = get_tokenizer()
|
85 |
+
|
86 |
+
image_size = model.config.vision_config.image_size
|
87 |
+
|
88 |
+
val_preprocess = Compose(
|
89 |
+
[
|
90 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
91 |
+
CenterCrop(image_size),
|
92 |
+
ToTensor(),
|
93 |
+
Normalize(
|
94 |
+
(0.48145466, 0.4578275, 0.40821073),
|
95 |
+
(0.26862954, 0.26130258, 0.27577711),
|
96 |
+
),
|
97 |
+
]
|
98 |
+
)
|
99 |
+
|
100 |
+
dataset = utils.CustomDataSet("photos/", transform=val_preprocess)
|
101 |
+
|
102 |
+
image_paths = utils.find_imageread_markdown_file(
|
103 |
+
query, model, dataset, tokenizer, image_features, n=2
|
104 |
+
)
|
105 |
+
|
106 |
+
st.image(image_paths)
|