Spaces:
Running
Running
Typos fixed
Browse files- examples.py +7 -6
examples.py
CHANGED
@@ -6,13 +6,14 @@ def app():
|
|
6 |
#st.title("Examples & Applications")
|
7 |
st.markdown("<h1 style='text-align: center; color: #CD212A;'> Examples & Applications </h1>", unsafe_allow_html=True)
|
8 |
st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Complex Queries -Image Retrieval </h2>", unsafe_allow_html=True)
|
|
|
9 |
st.write(
|
10 |
"""
|
11 |
|
12 |
|
13 |
-
Even though we trained the Italian CLIP model on way less examples than the original
|
14 |
-
OpenAI's CLIP, our training choices and quality datasets led to impressive results!
|
15 |
-
Here, we
|
16 |
|
17 |
Remember you can head to the **Text to Image** section of the demo at any time to test your own🤌 Italian queries!
|
18 |
|
@@ -20,7 +21,7 @@ def app():
|
|
20 |
)
|
21 |
|
22 |
st.markdown("### 1. Actors in Scenes")
|
23 |
-
st.markdown("These examples
|
24 |
|
25 |
st.subheader("una coppia")
|
26 |
st.markdown("*a couple*")
|
@@ -40,7 +41,7 @@ def app():
|
|
40 |
st.image("static/img/examples/couple_3.jpeg")
|
41 |
|
42 |
st.markdown("### 2. Dresses")
|
43 |
-
st.markdown("These examples
|
44 |
|
45 |
col1, col2 = st.beta_columns(2)
|
46 |
col1.subheader("un vestito primavrile")
|
@@ -58,4 +59,4 @@ def app():
|
|
58 |
"Is the DALLE-mini logo an *avocado* or an armchair (*poltrona*)?")
|
59 |
|
60 |
st.image("static/img/examples/dalle_mini.png")
|
61 |
-
st.markdown("It seems it's half an armchair and half an avocado! We thank the team for the great idea :)")
|
|
|
6 |
#st.title("Examples & Applications")
|
7 |
st.markdown("<h1 style='text-align: center; color: #CD212A;'> Examples & Applications </h1>", unsafe_allow_html=True)
|
8 |
st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Complex Queries -Image Retrieval </h2>", unsafe_allow_html=True)
|
9 |
+
|
10 |
st.write(
|
11 |
"""
|
12 |
|
13 |
|
14 |
+
Even though we trained the Italian CLIP model on way less examples(~1.4M) than the original
|
15 |
+
OpenAI's CLIP (~400M), our training choices and quality datasets led to impressive results!
|
16 |
+
Here, we present some of **the most impressive text-image associations** learned by our model.
|
17 |
|
18 |
Remember you can head to the **Text to Image** section of the demo at any time to test your own🤌 Italian queries!
|
19 |
|
|
|
21 |
)
|
22 |
|
23 |
st.markdown("### 1. Actors in Scenes")
|
24 |
+
st.markdown("These examples were taken from the CC dataset")
|
25 |
|
26 |
st.subheader("una coppia")
|
27 |
st.markdown("*a couple*")
|
|
|
41 |
st.image("static/img/examples/couple_3.jpeg")
|
42 |
|
43 |
st.markdown("### 2. Dresses")
|
44 |
+
st.markdown("These examples were taken from the Unsplash dataset")
|
45 |
|
46 |
col1, col2 = st.beta_columns(2)
|
47 |
col1.subheader("un vestito primavrile")
|
|
|
59 |
"Is the DALLE-mini logo an *avocado* or an armchair (*poltrona*)?")
|
60 |
|
61 |
st.image("static/img/examples/dalle_mini.png")
|
62 |
+
st.markdown("It seems it's half an armchair and half an avocado! We thank the DALLE-mini team for the great idea :)")
|