Spaces:
Running
Running
fixing a few things
Browse files- image2text.py +5 -4
- introduction.md +3 -3
- text2image.py +7 -3
image2text.py
CHANGED
@@ -13,7 +13,8 @@ def app():
|
|
13 |
|
14 |
### π Ciao!
|
15 |
|
16 |
-
Here you can find the captions that are most related to a given image.
|
|
|
17 |
|
18 |
π€ Italian mode on! π€
|
19 |
|
@@ -30,20 +31,20 @@ def app():
|
|
30 |
|
31 |
with col2:
|
32 |
captions_count = st.selectbox(
|
33 |
-
"Number of
|
34 |
)
|
35 |
compute = st.button("Compute")
|
36 |
|
37 |
with col1:
|
38 |
captions = list()
|
39 |
for idx in range(min(MAX_CAP, captions_count)):
|
40 |
-
captions.append(st.text_input(f"Insert
|
41 |
|
42 |
if compute:
|
43 |
captions = [c for c in captions if c != ""]
|
44 |
|
45 |
if not captions or not filename:
|
46 |
-
st.error("Please choose one image and at least one
|
47 |
else:
|
48 |
with st.spinner("Computing..."):
|
49 |
model = get_model()
|
|
|
13 |
|
14 |
### π Ciao!
|
15 |
|
16 |
+
Here you can find the captions or the labels that are most related to a given image. It is a zero-shot
|
17 |
+
image classification task!
|
18 |
|
19 |
π€ Italian mode on! π€
|
20 |
|
|
|
31 |
|
32 |
with col2:
|
33 |
captions_count = st.selectbox(
|
34 |
+
"Number of labels", options=range(1, MAX_CAP + 1)
|
35 |
)
|
36 |
compute = st.button("Compute")
|
37 |
|
38 |
with col1:
|
39 |
captions = list()
|
40 |
for idx in range(min(MAX_CAP, captions_count)):
|
41 |
+
captions.append(st.text_input(f"Insert label {idx+1}"))
|
42 |
|
43 |
if compute:
|
44 |
captions = [c for c in captions if c != ""]
|
45 |
|
46 |
if not captions or not filename:
|
47 |
+
st.error("Please choose one image and at least one label")
|
48 |
else:
|
49 |
with st.spinner("Computing..."):
|
50 |
model = get_model()
|
introduction.md
CHANGED
@@ -150,14 +150,14 @@ then there is its (partial) counting ability and finally the ability of understa
|
|
150 |
Look at the following - slightly cherry picked (but not even that much) - examples:
|
151 |
|
152 |
### Colors
|
153 |
-
Here's a
|
154 |
<img src="https://huggingface.co/spaces/clip-italian/clip-italian-demo/raw/main/static/img/fiore_giallo.png" alt="drawing" width="600"/>
|
155 |
|
156 |
-
And here's a
|
157 |
<img src="https://huggingface.co/spaces/clip-italian/clip-italian-demo/raw/main/static/img/fiore_blu.png" alt="drawing" width="600"/>
|
158 |
|
159 |
### Counting
|
160 |
-
What about "one cat"
|
161 |
<img src="https://huggingface.co/spaces/clip-italian/clip-italian-demo/raw/main/static/img/gatto.png" alt="drawing" width="600"/>
|
162 |
|
163 |
And what about "two cats"?
|
|
|
150 |
Look at the following - slightly cherry picked (but not even that much) - examples:
|
151 |
|
152 |
### Colors
|
153 |
+
Here's a yellow flower
|
154 |
<img src="https://huggingface.co/spaces/clip-italian/clip-italian-demo/raw/main/static/img/fiore_giallo.png" alt="drawing" width="600"/>
|
155 |
|
156 |
+
And here's a blu flower
|
157 |
<img src="https://huggingface.co/spaces/clip-italian/clip-italian-demo/raw/main/static/img/fiore_blu.png" alt="drawing" width="600"/>
|
158 |
|
159 |
### Counting
|
160 |
+
What about "one cat"?
|
161 |
<img src="https://huggingface.co/spaces/clip-italian/clip-italian-demo/raw/main/static/img/gatto.png" alt="drawing" width="600"/>
|
162 |
|
163 |
And what about "two cats"?
|
text2image.py
CHANGED
@@ -103,7 +103,11 @@ def app():
|
|
103 |
|
104 |
### π Ciao!
|
105 |
|
106 |
-
Here you can search for images in the Unsplash 25k Photos dataset.
|
|
|
|
|
|
|
|
|
107 |
|
108 |
π€ Italian mode on! π€
|
109 |
|
@@ -129,7 +133,7 @@ def app():
|
|
129 |
)
|
130 |
with col4:
|
131 |
st.button(
|
132 |
-
"Un
|
133 |
)
|
134 |
|
135 |
col1, col2 = st.beta_columns([3, 1])
|
@@ -163,7 +167,7 @@ def app():
|
|
163 |
raise ValueError()
|
164 |
|
165 |
image_paths = utils.find_image(
|
166 |
-
query, model, dataset, tokenizer, image_features,
|
167 |
)
|
168 |
|
169 |
st.image(image_paths)
|
|
|
103 |
|
104 |
### π Ciao!
|
105 |
|
106 |
+
Here you can search for images in the Unsplash 25k Photos dataset and the Conceptual Caption dataset.
|
107 |
+
You will see most queries make sense. When you see errors, there might be two possibilities: the model is answering
|
108 |
+
in a wrong way or the image you are looking for and the model is giving you the best answer it can get.
|
109 |
+
|
110 |
+
|
111 |
|
112 |
π€ Italian mode on! π€
|
113 |
|
|
|
133 |
)
|
134 |
with col4:
|
135 |
st.button(
|
136 |
+
"Un gatto sopra una sedia", on_click=update_query, kwargs=dict(value="Un gatto sopra una sedia")
|
137 |
)
|
138 |
|
139 |
col1, col2 = st.beta_columns([3, 1])
|
|
|
167 |
raise ValueError()
|
168 |
|
169 |
image_paths = utils.find_image(
|
170 |
+
query, model, dataset, tokenizer, image_features, 1, dataset_name
|
171 |
)
|
172 |
|
173 |
st.image(image_paths)
|