Spaces:
Running
Running
import io | |
import os | |
import requests | |
import zipfile | |
import natsort | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
from stqdm import stqdm | |
import streamlit as st | |
from jax import numpy as jnp | |
import transformers | |
from transformers import AutoTokenizer | |
from torchvision.transforms import Compose, CenterCrop, Normalize, Resize, ToTensor | |
from torchvision.transforms.functional import InterpolationMode | |
from modeling_hybrid_clip import FlaxHybridCLIP | |
import utils | |
def get_model(): | |
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian") | |
def get_tokenizer(): | |
return AutoTokenizer.from_pretrained( | |
"dbmdz/bert-base-italian-xxl-uncased", cache_dir="./", use_fast=True | |
) | |
def download_images(): | |
# from sentence_transformers import SentenceTransformer, util | |
img_folder = "photos/" | |
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0: | |
os.makedirs(img_folder, exist_ok=True) | |
photo_filename = "unsplash-25k-photos.zip" | |
if not os.path.exists(photo_filename): # Download dataset if does not exist | |
print(f"Downloading {photo_filename}...") | |
response = requests.get( | |
f"http://sbert.net/datasets/{photo_filename}", stream=True | |
) | |
total_size_in_bytes = int(response.headers.get("content-length", 0)) | |
block_size = 1024 # 1 Kb | |
progress_bar = stqdm( | |
total=total_size_in_bytes | |
) # , unit='iB', unit_scale=True | |
content = io.BytesIO() | |
for data in response.iter_content(block_size): | |
progress_bar.update(len(data)) | |
content.write(data) | |
progress_bar.close() | |
z = zipfile.ZipFile(content) | |
# content.close() | |
print("Extracting the dataset...") | |
z.extractall(path=img_folder) | |
print("Done.") | |
def get_image_features(dataset_name): | |
if dataset_name == "Unsplash": | |
return jnp.load("static/features/features.npy") | |
else: | |
return jnp.load("static/features/CC_val_embeddings.npy") | |
def load_urls(dataset_name): | |
if dataset_name == "CC": | |
with open("static/CC_val_urls.txt") as fp: | |
urls = [l.strip() for l in fp.readlines()] | |
return urls | |
else: | |
ValueError(f"{dataset_name} not supported here") | |
def app(): | |
st.title("From Text to Image") | |
st.markdown( | |
""" | |
### π Ciao! | |
Here you can search for images in the Unsplash 25k Photos dataset. | |
π€ Italian mode on! π€ | |
""" | |
) | |
if "suggestion" not in st.session_state: | |
st.session_state.suggestion = "" | |
def update_query(value=""): | |
st.session_state.suggestion = value | |
col1, col2, col3, col4 = st.beta_columns(4) | |
with col1: | |
st.button("Un gatto", on_click=update_query, kwargs=dict(value="Un gatto")) | |
with col2: | |
st.button("Due gatti", on_click=update_query, kwargs=dict(value="Due gatti")) | |
with col3: | |
st.button( | |
"Un fiore giallo", | |
on_click=update_query, | |
kwargs=dict(value="Un fiore giallo"), | |
) | |
with col4: | |
st.button( | |
"Un fiore blu", on_click=update_query, kwargs=dict(value="Un fiore blu") | |
) | |
col1, col2 = st.beta_columns([3, 1]) | |
with col1: | |
query = st.text_input( | |
"Insert an italian query text here...", st.session_state.suggestion | |
) | |
with col2: | |
dataset_name = st.selectbox("IR dataset", ["Unsplash", "CC"]) | |
if query: | |
with st.spinner("Computing..."): | |
model = get_model() | |
if dataset_name == "Unsplash": | |
download_images() | |
image_features = get_image_features(dataset_name) | |
model = get_model() | |
tokenizer = get_tokenizer() | |
if dataset_name == "Unsplash": | |
image_size = model.config.vision_config.image_size | |
val_preprocess = Compose( | |
[ | |
Resize([image_size], interpolation=InterpolationMode.BICUBIC), | |
CenterCrop(image_size), | |
ToTensor(), | |
Normalize( | |
(0.48145466, 0.4578275, 0.40821073), | |
(0.26862954, 0.26130258, 0.27577711), | |
), | |
] | |
) | |
dataset = utils.CustomDataSet("photos/", transform=val_preprocess) | |
elif dataset_name == "CC": | |
dataset = load_urls(dataset_name) | |
else: | |
raise ValueError() | |
image_paths = utils.find_image( | |
query, model, dataset, tokenizer, image_features, 2, dataset_name | |
) | |
st.image(image_paths) | |