Spaces:
Running
Running
import streamlit as st | |
import os | |
import torch | |
from pathlib import Path | |
from transformers import AutoTokenizer | |
from jax import numpy as jnp | |
import json | |
import requests | |
import zipfile | |
import io | |
import natsort | |
from PIL import Image as PilImage | |
from torchvision import datasets, transforms | |
from torchvision.transforms import CenterCrop, Normalize, Resize, ToTensor | |
from torchvision.transforms.functional import InterpolationMode | |
from tqdm import tqdm | |
from modeling_hybrid_clip import FlaxHybridCLIP | |
import utils | |
def get_model(): | |
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian") | |
def download_images(): | |
# from sentence_transformers import SentenceTransformer, util | |
img_folder = "photos/" | |
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0: | |
os.makedirs(img_folder, exist_ok=True) | |
photo_filename = "unsplash-25k-photos.zip" | |
if not os.path.exists(photo_filename): # Download dataset if does not exist | |
print(f"Downloading {photo_filename}...") | |
r = requests.get("http://sbert.net/datasets/" + photo_filename, stream=True) | |
z = zipfile.ZipFile(io.BytesIO(r.content)) | |
print("Extracting the dataset...") | |
z.extractall(path=img_folder) | |
print("Done.") | |
def get_image_features(): | |
return jnp.load("static/features/features.npy") | |
""" | |
# π Ciao! | |
# CLIP Italian Demo (Flax Community Week) | |
""" | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
query = st.text_input("Insert a query text") | |
if query: | |
with st.spinner("Computing in progress..."): | |
model = get_model() | |
download_images() | |
image_features = get_image_features() | |
model = get_model() | |
tokenizer = AutoTokenizer.from_pretrained( | |
"dbmdz/bert-base-italian-xxl-uncased", cache_dir=None, use_fast=True | |
) | |
image_size = model.config.vision_config.image_size | |
val_preprocess = transforms.Compose( | |
[ | |
Resize([image_size], interpolation=InterpolationMode.BICUBIC), | |
CenterCrop(image_size), | |
ToTensor(), | |
Normalize( | |
(0.48145466, 0.4578275, 0.40821073), | |
(0.26862954, 0.26130258, 0.27577711), | |
), | |
] | |
) | |
dataset = utils.CustomDataSet("photos/", transform=val_preprocess) | |
image_paths = utils.find_image( | |
query, model, dataset, tokenizer, image_features, n=2 | |
) | |
st.image(image_paths) | |
def read_markdown_file(markdown_file): | |
return Path(markdown_file).read_text() | |
intro_markdown = read_markdown_file("readme.md") | |
st.markdown(intro_markdown, unsafe_allow_html=True) |