Spaces:
Running
Running
import os | |
import natsort | |
from tqdm import tqdm | |
import torch | |
from jax import numpy as jnp | |
from PIL import Image as PilImage | |
class CustomDataSet(torch.utils.data.Dataset): | |
def __init__(self, main_dir, transform): | |
self.main_dir = main_dir | |
self.transform = transform | |
all_imgs = os.listdir(main_dir) | |
self.total_imgs = natsort.natsorted(all_imgs) | |
def __len__(self): | |
return len(self.total_imgs) | |
def get_image_name(self, idx): | |
return self.total_imgs[idx] | |
def __getitem__(self, idx): | |
img_loc = os.path.join(self.main_dir, self.total_imgs[idx]) | |
image = PilImage.open(img_loc).convert("RGB") | |
tensor_image = self.transform(image) | |
return tensor_image | |
def text_encoder(text, model, tokenizer): | |
inputs = tokenizer( | |
[text], | |
max_length=96, | |
truncation=True, | |
padding="max_length", | |
return_tensors="np", | |
) | |
embedding = model.get_text_features(inputs["input_ids"], inputs["attention_mask"])[ | |
0 | |
] | |
embedding /= jnp.linalg.norm(embedding) | |
return jnp.expand_dims(embedding, axis=0) | |
def precompute_image_features(model, loader): | |
image_features = [] | |
for i, (images) in enumerate(tqdm(loader)): | |
images = images.permute(0, 2, 3, 1).numpy() | |
features = model.get_image_features( | |
images, | |
) | |
features /= jnp.linalg.norm(features, axis=-1, keepdims=True) | |
image_features.extend(features) | |
return jnp.array(image_features) | |
def find_image(text_query, model, dataset, tokenizer, image_features, n=1): | |
zeroshot_weights = text_encoder(text_query, model, tokenizer) | |
zeroshot_weights /= jnp.linalg.norm(zeroshot_weights) | |
distances = jnp.dot(image_features, zeroshot_weights.reshape(-1, 1)) | |
file_paths = [] | |
for i in range(1, n + 1): | |
idx = jnp.argsort(distances, axis=0)[-i, 0] | |
file_paths.append("photos/" + dataset.get_image_name(idx)) | |
return file_paths | |