g8a9's picture
Replicate IR on Unsplash with local download
128a4c1
raw
history blame
4.46 kB
import streamlit as st
import os
import torch
from transformers import AutoTokenizer
from jax import numpy as jnp
import json
import requests
import zipfile
import io
import natsort
from PIL import Image as PilImage
from torchvision import datasets, transforms
from torchvision.transforms import CenterCrop, Normalize, Resize, ToTensor
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
from modeling_hybrid_clip import FlaxHybridCLIP
@st.cache
def get_model():
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian")
@st.cache
def download_images():
# from sentence_transformers import SentenceTransformer, util
img_folder = "photos/"
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
os.makedirs(img_folder, exist_ok=True)
photo_filename = "unsplash-25k-photos.zip"
if not os.path.exists(photo_filename): # Download dataset if does not exist
print(f"Downloading {photo_filename}...")
r = requests.get("http://sbert.net/datasets/" + photo_filename, stream=True)
z = zipfile.ZipFile(io.BytesIO(r.content))
print("Extracting the dataset...")
z.extractall(path=img_folder)
print("Done.")
@st.cache
def get_image_features(model, image_dir):
image_size = model.config.vision_config.image_size
val_preprocess = transforms.Compose(
[
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
ToTensor(),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)
dataset = CustomDataSet(image_dir, transform=val_preprocess)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=256,
shuffle=False,
num_workers=2,
persistent_workers=True,
drop_last=False,
)
return precompute_image_features(loader), dataset
class CustomDataSet(torch.utils.data.Dataset):
def __init__(self, main_dir, transform):
self.main_dir = main_dir
self.transform = transform
all_imgs = os.listdir(main_dir)
self.total_imgs = natsort.natsorted(all_imgs)
def __len__(self):
return len(self.total_imgs)
def get_image_name(self, idx):
return self.total_imgs[idx]
def __getitem__(self, idx):
img_loc = os.path.join(self.main_dir, self.total_imgs[idx])
image = PilImage.open(img_loc).convert("RGB")
tensor_image = self.transform(image)
return tensor_image
def text_encoder(text, tokenizer):
inputs = tokenizer(
[text],
max_length=96,
truncation=True,
padding="max_length",
return_tensors="np",
)
embedding = model.get_text_features(inputs["input_ids"], inputs["attention_mask"])[
0
]
embedding /= jnp.linalg.norm(embedding)
return jnp.expand_dims(embedding, axis=0)
def precompute_image_features(loader):
image_features = []
for i, (images) in enumerate(tqdm(loader)):
images = images.permute(0, 2, 3, 1).numpy()
features = model.get_image_features(
images,
)
features /= jnp.linalg.norm(features, axis=-1, keepdims=True)
image_features.extend(features)
return jnp.array(image_features)
def find_image(text_query, dataset, tokenizer, image_features, n=1):
zeroshot_weights = text_encoder(text_query, tokenizer)
zeroshot_weights /= jnp.linalg.norm(zeroshot_weights)
distances = jnp.dot(image_features, zeroshot_weights.reshape(-1, 1))
file_paths = []
for i in range(1, n + 1):
idx = jnp.argsort(distances, axis=0)[-i, 0]
file_paths.append("photos/" + dataset.get_image_name(idx))
return file_paths
"""
# CLIP Italian Demo (Flax Community Week)
"""
os.environ["TOKENIZERS_PARALLELISM"] = "false"
query = st.text_input("Insert a query text")
if query:
with st.spinner("Computing in progress..."):
model = get_model()
download_images()
tokenizer = AutoTokenizer.from_pretrained(
"dbmdz/bert-base-italian-xxl-uncased", cache_dir=None, use_fast=True
)
image_features, dataset = get_image_features(model, "photos")
image_paths = find_image(query, dataset, tokenizer, image_features, n=3)
st.image(image_paths)