Spaces:
Running
on
Zero
Running
on
Zero
Clint Adams
commited on
Commit
·
dbf5021
1
Parent(s):
0087f2b
Initial attempt
Browse files- README.md +8 -1
- app.py +285 -0
- requirements.txt +9 -0
README.md
CHANGED
@@ -7,6 +7,13 @@ sdk: gradio
|
|
7 |
sdk_version: 4.26.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
7 |
sdk_version: 4.26.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
models:
|
11 |
+
- stabilityai/stable-diffusion-xl-base-1.0
|
12 |
+
- h94/IP-Adapter
|
13 |
+
preload_from_hub:
|
14 |
+
- stabilityai/stable-diffusion-xl-base-1.0
|
15 |
+
- h94/IP-Adapter
|
16 |
---
|
17 |
|
18 |
+
This demo uses code lifted almost verbatim from
|
19 |
+
[Outpainting II - Differential Diffusion](https://huggingface.co/blog/OzzyGT/outpainting-differential-diffusion).
|
app.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline
|
8 |
+
|
9 |
+
xlp_kwargs = {
|
10 |
+
'custom_pipeline': 'pipeline_stable_diffusion_xl_differential_img2img'
|
11 |
+
}
|
12 |
+
|
13 |
+
if torch.cuda.is_available():
|
14 |
+
device = 'cuda'
|
15 |
+
device_dtype = torch.float16
|
16 |
+
xlp_kwargs['variant'] = 'fp16'
|
17 |
+
else:
|
18 |
+
device = 'cpu'
|
19 |
+
device_dtype = torch.float32
|
20 |
+
|
21 |
+
xlp_kwargs['torch_dtype'] = device_dtype
|
22 |
+
|
23 |
+
|
24 |
+
def merge_images(original, new_image, offset, direction):
|
25 |
+
if direction in ["left", "right"]:
|
26 |
+
merged_image = np.zeros(
|
27 |
+
(original.shape[0], original.shape[1] + offset, 3), dtype=np.uint8)
|
28 |
+
elif direction in ["top", "bottom"]:
|
29 |
+
merged_image = np.zeros(
|
30 |
+
(original.shape[0] + offset, original.shape[1], 3), dtype=np.uint8)
|
31 |
+
|
32 |
+
if direction == "left":
|
33 |
+
merged_image[:, offset:] = original
|
34 |
+
merged_image[:, : new_image.shape[1]] = new_image
|
35 |
+
elif direction == "right":
|
36 |
+
merged_image[:, : original.shape[1]] = original
|
37 |
+
merged_image[:, original.shape[1] + offset -
|
38 |
+
new_image.shape[1]: original.shape[1] + offset] = new_image
|
39 |
+
elif direction == "top":
|
40 |
+
merged_image[offset:, :] = original
|
41 |
+
merged_image[: new_image.shape[0], :] = new_image
|
42 |
+
elif direction == "bottom":
|
43 |
+
merged_image[: original.shape[0], :] = original
|
44 |
+
merged_image[original.shape[0] + offset - new_image.shape[0]: original.shape[0] + offset, :] = new_image
|
45 |
+
|
46 |
+
return merged_image
|
47 |
+
|
48 |
+
|
49 |
+
def slice_image(image):
|
50 |
+
height, width, _ = image.shape
|
51 |
+
slice_size = min(width // 2, height // 3)
|
52 |
+
|
53 |
+
slices = []
|
54 |
+
|
55 |
+
for h in range(3):
|
56 |
+
for w in range(2):
|
57 |
+
left = w * slice_size
|
58 |
+
upper = h * slice_size
|
59 |
+
right = left + slice_size
|
60 |
+
lower = upper + slice_size
|
61 |
+
|
62 |
+
if w == 1 and right > width:
|
63 |
+
left -= right - width
|
64 |
+
right = width
|
65 |
+
if h == 2 and lower > height:
|
66 |
+
upper -= lower - height
|
67 |
+
lower = height
|
68 |
+
|
69 |
+
slice = image[upper:lower, left:right]
|
70 |
+
slices.append(slice)
|
71 |
+
|
72 |
+
return slices
|
73 |
+
|
74 |
+
|
75 |
+
def process_image(
|
76 |
+
image,
|
77 |
+
fill_color=(0, 0, 0),
|
78 |
+
mask_offset=50,
|
79 |
+
blur_radius=500,
|
80 |
+
expand_pixels=256,
|
81 |
+
direction="left",
|
82 |
+
inpaint_mask_color=50,
|
83 |
+
max_size=1024,
|
84 |
+
):
|
85 |
+
height, width = image.shape[:2]
|
86 |
+
|
87 |
+
new_height = height + \
|
88 |
+
(expand_pixels if direction in ["top", "bottom"] else 0)
|
89 |
+
new_width = width + \
|
90 |
+
(expand_pixels if direction in ["left", "right"] else 0)
|
91 |
+
|
92 |
+
if new_height > max_size:
|
93 |
+
# If so, crop the image from the opposite side
|
94 |
+
if direction == "top":
|
95 |
+
image = image[:max_size, :]
|
96 |
+
elif direction == "bottom":
|
97 |
+
image = image[new_height - max_size:, :]
|
98 |
+
new_height = max_size
|
99 |
+
|
100 |
+
if new_width > max_size:
|
101 |
+
# If so, crop the image from the opposite side
|
102 |
+
if direction == "left":
|
103 |
+
image = image[:, :max_size]
|
104 |
+
elif direction == "right":
|
105 |
+
image = image[:, new_width - max_size:]
|
106 |
+
new_width = max_size
|
107 |
+
|
108 |
+
height, width = image.shape[:2]
|
109 |
+
|
110 |
+
new_image = np.full((new_height, new_width, 3), fill_color, dtype=np.uint8)
|
111 |
+
mask = np.full_like(new_image, 255, dtype=np.uint8)
|
112 |
+
inpaint_mask = np.full_like(new_image, 0, dtype=np.uint8)
|
113 |
+
|
114 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
115 |
+
inpaint_mask = cv2.cvtColor(inpaint_mask, cv2.COLOR_BGR2GRAY)
|
116 |
+
|
117 |
+
if direction == "left":
|
118 |
+
new_image[:, expand_pixels:] = image[:, : max_size - expand_pixels]
|
119 |
+
mask[:, : expand_pixels + mask_offset] = inpaint_mask_color
|
120 |
+
inpaint_mask[:, :expand_pixels] = 255
|
121 |
+
elif direction == "right":
|
122 |
+
new_image[:, :width] = image
|
123 |
+
mask[:, width - mask_offset:] = inpaint_mask_color
|
124 |
+
inpaint_mask[:, width:] = 255
|
125 |
+
elif direction == "top":
|
126 |
+
new_image[expand_pixels:, :] = image[: max_size - expand_pixels, :]
|
127 |
+
mask[: expand_pixels + mask_offset, :] = inpaint_mask_color
|
128 |
+
inpaint_mask[:expand_pixels, :] = 255
|
129 |
+
elif direction == "bottom":
|
130 |
+
new_image[:height, :] = image
|
131 |
+
mask[height - mask_offset:, :] = inpaint_mask_color
|
132 |
+
inpaint_mask[height:, :] = 255
|
133 |
+
|
134 |
+
# mask blur
|
135 |
+
if blur_radius % 2 == 0:
|
136 |
+
blur_radius += 1
|
137 |
+
mask = cv2.GaussianBlur(mask, (blur_radius, blur_radius), 0)
|
138 |
+
|
139 |
+
# telea inpaint
|
140 |
+
_, mask_np = cv2.threshold(
|
141 |
+
inpaint_mask, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
|
142 |
+
inpaint = cv2.inpaint(new_image, mask_np, 3, cv2.INPAINT_TELEA)
|
143 |
+
|
144 |
+
# convert image to tensor
|
145 |
+
inpaint = cv2.cvtColor(inpaint, cv2.COLOR_BGR2RGB)
|
146 |
+
inpaint = torch.from_numpy(inpaint).permute(2, 0, 1).float()
|
147 |
+
inpaint = inpaint / 127.5 - 1
|
148 |
+
inpaint = inpaint.unsqueeze(0).to(device)
|
149 |
+
|
150 |
+
# convert mask to tensor
|
151 |
+
mask = torch.from_numpy(mask)
|
152 |
+
mask = mask.unsqueeze(0).float() / 255.0
|
153 |
+
mask = mask.to(device)
|
154 |
+
|
155 |
+
return inpaint, mask
|
156 |
+
|
157 |
+
|
158 |
+
def image_resize(image, new_size=1024):
|
159 |
+
height, width = image.shape[:2]
|
160 |
+
|
161 |
+
aspect_ratio = width / height
|
162 |
+
new_width = new_size
|
163 |
+
new_height = new_size
|
164 |
+
|
165 |
+
if aspect_ratio != 1:
|
166 |
+
if width > height:
|
167 |
+
new_height = int(new_size / aspect_ratio)
|
168 |
+
else:
|
169 |
+
new_width = int(new_size * aspect_ratio)
|
170 |
+
|
171 |
+
image = cv2.resize(image, (new_width, new_height),
|
172 |
+
interpolation=cv2.INTER_LANCZOS4)
|
173 |
+
|
174 |
+
return image
|
175 |
+
|
176 |
+
|
177 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
178 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
179 |
+
**xlp_kwargs
|
180 |
+
).to(device)
|
181 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
|
182 |
+
pipeline.scheduler.config, use_karras_sigmas=True)
|
183 |
+
|
184 |
+
pipeline.load_ip_adapter(
|
185 |
+
"h94/IP-Adapter",
|
186 |
+
subfolder="sdxl_models",
|
187 |
+
weight_name=[
|
188 |
+
"ip-adapter-plus_sdxl_vit-h.safetensors",
|
189 |
+
],
|
190 |
+
image_encoder_folder="models/image_encoder",
|
191 |
+
)
|
192 |
+
pipeline.set_ip_adapter_scale(0.1)
|
193 |
+
|
194 |
+
|
195 |
+
def generate_image(prompt, negative_prompt, image, mask, ip_adapter_image, seed: int = None):
|
196 |
+
if seed is None:
|
197 |
+
seed = random.randint(0, 2**32 - 1)
|
198 |
+
|
199 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
200 |
+
|
201 |
+
image = pipeline(
|
202 |
+
prompt=prompt,
|
203 |
+
negative_prompt=negative_prompt,
|
204 |
+
width=1024,
|
205 |
+
height=1024,
|
206 |
+
guidance_scale=4.0,
|
207 |
+
num_inference_steps=25,
|
208 |
+
original_image=image,
|
209 |
+
image=image,
|
210 |
+
strength=1.0,
|
211 |
+
map=mask,
|
212 |
+
generator=generator,
|
213 |
+
ip_adapter_image=[ip_adapter_image],
|
214 |
+
output_type="np",
|
215 |
+
).images[0]
|
216 |
+
|
217 |
+
image = (image * 255).astype(np.uint8)
|
218 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
219 |
+
|
220 |
+
return image
|
221 |
+
|
222 |
+
|
223 |
+
def outpaint(pil_image, direction='right', times_to_expand=4):
|
224 |
+
prompt = ""
|
225 |
+
negative_prompt = ""
|
226 |
+
inpaint_mask_color = 50 # lighter use more of the Telea inpainting
|
227 |
+
# I recommend to don't go more than half of the picture so it has context
|
228 |
+
expand_pixels = 256
|
229 |
+
|
230 |
+
original = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
231 |
+
image = image_resize(original)
|
232 |
+
# image.shape[1] for horizontal, image.shape[0] for vertical
|
233 |
+
expand_pixels_to_square = 1024 - image.shape[1]
|
234 |
+
image, mask = process_image(
|
235 |
+
image, expand_pixels=expand_pixels_to_square, direction=direction, inpaint_mask_color=inpaint_mask_color
|
236 |
+
)
|
237 |
+
|
238 |
+
ip_adapter_image = []
|
239 |
+
for index, part in enumerate(slice_image(original)):
|
240 |
+
ip_adapter_image.append(part)
|
241 |
+
|
242 |
+
generated = generate_image(
|
243 |
+
prompt, negative_prompt, image, mask, ip_adapter_image)
|
244 |
+
final_image = generated
|
245 |
+
|
246 |
+
for i in range(times_to_expand):
|
247 |
+
image, mask = process_image(
|
248 |
+
final_image, direction=direction, expand_pixels=expand_pixels, inpaint_mask_color=inpaint_mask_color
|
249 |
+
)
|
250 |
+
|
251 |
+
ip_adapter_image = []
|
252 |
+
for index, part in enumerate(slice_image(generated)):
|
253 |
+
ip_adapter_image.append(part)
|
254 |
+
|
255 |
+
generated = generate_image(
|
256 |
+
prompt, negative_prompt, image, mask, ip_adapter_image)
|
257 |
+
final_image = merge_images(final_image, generated, 256, direction)
|
258 |
+
|
259 |
+
color_converted = cv2.cvtColor(final_image, cv2.COLOR_BGR2RGB)
|
260 |
+
return color_converted
|
261 |
+
|
262 |
+
|
263 |
+
gradio_app = gr.Interface(
|
264 |
+
outpaint,
|
265 |
+
inputs=[
|
266 |
+
gr.Image(label="Select start image", sources=[
|
267 |
+
'upload', 'webcam'], type='pil'),
|
268 |
+
gr.Radio(["left", "right", "top", 'bottom'], label="Direction",
|
269 |
+
info="Outward from which edge to paint?", value='right'),
|
270 |
+
gr.Slider(2, 4, step=1, value=4, label="Times to expand",
|
271 |
+
info="Choose between 2 and 4"),
|
272 |
+
],
|
273 |
+
outputs=[gr.Image(label="Processed Image")],
|
274 |
+
title="Outpainting with differential diffusion demo",
|
275 |
+
description='''
|
276 |
+
# Outpainting with differential diffusion demo
|
277 |
+
This uses code lifted almost verbatim from
|
278 |
+
[Outpainting II - Differential Diffusion](https://huggingface.co/blog/OzzyGT/outpainting-differential-diffusion).
|
279 |
+
|
280 |
+
If this Space is running on a CPU, it will take hours to get results. You may [duplicate this space](https://huggingface.co/spaces/clinteroni/outpainting-demo?duplicate=true) and pay for an upgraded runtime instead.
|
281 |
+
'''
|
282 |
+
)
|
283 |
+
|
284 |
+
if __name__ == "__main__":
|
285 |
+
gradio_app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
git+https://github.com/huggingface/diffusers.git
|
3 |
+
gradio
|
4 |
+
numpy
|
5 |
+
opencv-python
|
6 |
+
pillow
|
7 |
+
torch
|
8 |
+
torchvision
|
9 |
+
transformers
|