Santi Diana commited on
Commit
743aac4
1 Parent(s): ae9059f

Updated app.py to add clustering

Browse files
Files changed (1) hide show
  1. app.py +15 -5
app.py CHANGED
@@ -29,7 +29,10 @@ def sts_dataframe_udpate():
29
  return dataframe
30
 
31
  def clustering_dataframe_update():
32
- pass
 
 
 
33
 
34
  def retrieval_dataframe_update():
35
  pass
@@ -75,7 +78,7 @@ with block:
75
  gr.Markdown("""
76
  **Tabla Classification de Embeddings**
77
 
78
- - **Métricas:** Spearman correlation based on cosine similarity.
79
  - **Idioma:** Español
80
  """)
81
  with gr.Row():
@@ -91,7 +94,7 @@ with block:
91
  gr.Markdown("""
92
  **Tabla Classification de Embeddings**
93
 
94
- - **Metricas:** .
95
  - **Idioma:** Español
96
  """)
97
  with gr.Row():
@@ -103,11 +106,18 @@ with block:
103
  wrap=True,
104
  )
105
  with gr.TabItem("Clustering"):
 
 
 
 
 
 
 
106
  with gr.Row():
107
  # Create and display a sample DataFrame
108
- sts = clustering_dataframe_update()
109
  data_overall = gr.components.Dataframe(
110
- sts,
111
  type="pandas",
112
  wrap=True,
113
  )
 
29
  return dataframe
30
 
31
  def clustering_dataframe_update():
32
+ """
33
+ Returns clustering dataframe for clustering table.
34
+ """
35
+ dataframe = pd.read_csv("data/clustering.csv")
36
 
37
  def retrieval_dataframe_update():
38
  pass
 
78
  gr.Markdown("""
79
  **Tabla Classification de Embeddings**
80
 
81
+ - **Métricas:** Accuracy.
82
  - **Idioma:** Español
83
  """)
84
  with gr.Row():
 
94
  gr.Markdown("""
95
  **Tabla Classification de Embeddings**
96
 
97
+ - **Metricas:** Spearman correlation basada en cosine similarity.
98
  - **Idioma:** Español
99
  """)
100
  with gr.Row():
 
106
  wrap=True,
107
  )
108
  with gr.TabItem("Clustering"):
109
+ with gr.Row():
110
+ gr.Markdown("""
111
+ **Tabla Classification de Embeddings**
112
+
113
+ - **Metricas:** V_measure.
114
+ - **Idioma:** Español
115
+ """)
116
  with gr.Row():
117
  # Create and display a sample DataFrame
118
+ clustering = clustering_dataframe_update()
119
  data_overall = gr.components.Dataframe(
120
+ clustering,
121
  type="pandas",
122
  wrap=True,
123
  )