Santi Diana
Automatic Evaluation Available. Read the README filegit add add_new_model/README.md add_new_model/add_new_model.py app.py add_new_model/execute_evaluation.py
d38c074
raw
history blame
10.1 kB
import pandas as pd
import yaml
import numpy as np
import argparse
from execute_evaluation import evaluate
import logging
import os
import json
import sys
from mteb import MTEB
def add_model():
"""
Esto actualiza el archivo del cual app.py coge la información para crear la leaderboard. Entonces, cuando
alguien quiera añadir un nuevo modelo, tiene que ejecutar este archivo.
1. Leemos el CSV, sacamos información y añadimos simplemente una nueva row.
"""
# Initialize an empty DataFrame
df = pd.DataFrame(columns=['dataset_name', 'Accuracy', 'Spearman', "Category"])
metadata_archive = 'mteb_metadata.yaml'
with open(metadata_archive, 'r') as file:
for index, data in enumerate(yaml.safe_load_all(file)):
if index == 0:
model_index_list = data.get('model-index', [])
model_name = model_index_list[0].get('name')
results_list = model_index_list[0].get('results', [])
if results_list:
for i in range(len(results_list)):
task = results_list[i].get('task', {})
task_name = task.get("type")
dataset_name = results_list[i]['dataset']['name']
# Initialize the row with NaN values
row = {'dataset_name': dataset_name, 'Accuracy': None, 'Spearman': None}
if task_name == "Classification":
accuracy = next((metric.get('value') for metric in results_list[i].get('metrics', []) if metric.get('type') == 'accuracy'), None)
row['Accuracy'] = accuracy
row['Category'] = "Classification"
elif task_name == "STS":
spearman = next((metric.get('value') for metric in results_list[i].get('metrics', []) if metric.get('type') == 'cos_sim_spearman'), None)
row['Spearman'] = spearman
row["Category"] = "STS"
# Append the row to the DataFrame using pd.concat
new_df = pd.DataFrame([row])
df = pd.concat([df, new_df], ignore_index=True)
df['Accuracy'] = pd.to_numeric(df['Accuracy'], errors='coerce')
classification_average = round(df.loc[df['Category'] == 'Classification', 'Accuracy'].mean(),2)
df['Spearman'] = pd.to_numeric(df['Spearman'], errors='coerce')
sts_spearman_average = round(df.loc[df['Category'] == 'STS', 'Spearman'].mean(),2)
## CLASSIFICATION
classification_dataframe = pd.read_csv('../data/classification.csv')
classification_df = df[df['Category']== 'Classification']
new_row_data = {'Model name': model_name, 'Average': classification_average}
for index, row in classification_df.iterrows():
column_name = row['dataset_name']
accuracy_value = row['Accuracy']
new_row_data[column_name] = round(accuracy_value,2)
new_row_df = pd.DataFrame(new_row_data,index=[0])
classification_dataframe = pd.concat([classification_dataframe,new_row_df],ignore_index=True)
classification_dataframe.to_csv("../data/classification.csv",index=False)
## STS
sts_dataframe = pd.read_csv('../data/sts.csv')
sts_df = df[df['Category']=='STS']
new_row_data = {'Model name': model_name, 'Average': sts_spearman_average}
for index, row in sts_df.iterrows():
column_name = row['dataset_name']
spearman_value = row['Spearman']
new_row_data[column_name] = round(spearman_value,2)
new_row_df = pd.DataFrame(new_row_data,index = [0])
sts_dataframe = pd.concat([sts_dataframe,new_row_df],ignore_index=True)
sts_dataframe.to_csv('../data/sts.csv',index=False)
## GENERAL
general_dataframe = pd.read_csv("../data/general.csv")
average = round(np.mean([classification_average,sts_spearman_average]),2)
## TODO: solucionar la meta-data como Model Size o Embedding Dimensions.
new_instance = {'Model name':model_name, 'Model Size (GB)': None, 'Embedding Dimensions': None, 'Average':average, 'Classification Average': classification_average, 'Clustering Average': None, 'STS Average': sts_spearman_average, 'Retrieval Average': None}
new_row_df = pd.DataFrame(new_instance, index=[0])
general_dataframe = pd.concat([general_dataframe, new_row_df], ignore_index=True)
general_dataframe.to_csv("../data/general.csv",index=False)
def results_to_yaml(results_folder):
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
model_name = results_folder.split("/")[-1]
all_results = {}
for file_name in os.listdir(results_folder):
if not file_name.endswith(".json"):
logger.info(f"Skipping non-json {file_name}")
raise ValueError("This is not the proper folder. It does not contain the corresponding Json files.")
continue
with open(os.path.join(results_folder, file_name), "r", encoding="utf-8") as f:
results = json.load(f)
all_results = {**all_results, **{file_name.replace(".json", ""): results}}
# Use "train" split instead
TRAIN_SPLIT = ["DanishPoliticalCommentsClassification"]
# Use "validation" split instead
VALIDATION_SPLIT = ["AFQMC", "Cmnli", "IFlyTek", "TNews", "MSMARCO", "MultilingualSentiment", "Ocnli"]
# Use "dev" split instead
DEV_SPLIT = ["CmedqaRetrieval", "CovidRetrieval", "DuRetrieval", "EcomRetrieval", "MedicalRetrieval", "MMarcoReranking", "MMarcoRetrieval", "MSMARCO", "T2Reranking", "T2Retrieval", "VideoRetrieval"]
MARKER = "---"
TAGS = "tags:"
MTEB_TAG = "- mteb"
HEADER = "model-index:"
MODEL = f"- name: {model_name}"
RES = " results:"
META_STRING = "\n".join([MARKER, TAGS, MTEB_TAG, HEADER, MODEL, RES])
ONE_TASK = " - task:\n type: {}\n dataset:\n type: {}\n name: {}\n config: {}\n split: {}\n revision: {}\n metrics:"
ONE_METRIC = " - type: {}\n value: {}"
SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold"]
for ds_name, res_dict in sorted(all_results.items()):
mteb_desc = (
MTEB(tasks=[ds_name.replace("CQADupstackRetrieval", "CQADupstackAndroidRetrieval")]).tasks[0].description
)
hf_hub_name = mteb_desc.get("hf_hub_name", mteb_desc.get("beir_name"))
if "CQADupstack" in ds_name:
hf_hub_name = "BeIR/cqadupstack"
mteb_type = mteb_desc["type"]
revision = res_dict.get("dataset_revision") # Okay if it's None
split = "test"
if (ds_name in TRAIN_SPLIT) and ("train" in res_dict):
split = "train"
elif (ds_name in VALIDATION_SPLIT) and ("validation" in res_dict):
split = "validation"
elif (ds_name in DEV_SPLIT) and ("dev" in res_dict):
split = "dev"
elif "test" not in res_dict:
logger.info(f"Skipping {ds_name} as split {split} not present.")
continue
res_dict = res_dict.get(split)
for lang in mteb_desc["eval_langs"]:
mteb_name = f"MTEB {ds_name}"
mteb_name += f" ({lang})" if len(mteb_desc["eval_langs"]) > 1 else ""
# For English there is no language key if it's the only language
test_result_lang = res_dict.get(lang) if len(mteb_desc["eval_langs"]) > 1 else res_dict
# Skip if the language was not found but it has other languages
if test_result_lang is None:
continue
META_STRING += "\n" + ONE_TASK.format(
mteb_type, hf_hub_name, mteb_name, lang if len(mteb_desc["eval_langs"]) > 1 else "default", split, revision
)
for metric, score in test_result_lang.items():
if not isinstance(score, dict):
score = {metric: score}
for sub_metric, sub_score in score.items():
if any([x in sub_metric for x in SKIP_KEYS]):
continue
META_STRING += "\n" + ONE_METRIC.format(
f"{metric}_{sub_metric}" if metric != sub_metric else metric,
# All MTEB scores are 0-1, multiply them by 100 for 3 reasons:
# 1) It's easier to visually digest (You need two chars less: "0.1" -> "1")
# 2) Others may multiply them by 100, when building on MTEB making it confusing what the range is
# This happend with Text and Code Embeddings paper (OpenAI) vs original BEIR paper
# 3) It's accepted practice (SuperGLUE, GLUE are 0-100)
sub_score * 100,
)
META_STRING += "\n" + MARKER
if os.path.exists(f"./mteb_metadata.yaml"):
logger.warning("Overwriting mteb_metadata.md")
with open(f"./mteb_metadata.yaml", "w") as f:
f.write(META_STRING)
def main():
if args.execute_eval:
output_folder = evaluate(args.model_id)
results_to_yaml(output_folder)
add_model()
else:
print('Hola')
print(args.output_folder)
if args.output_folder == None:
raise ValueError("You must indicate where your results are located")
else:
results_to_yaml(args.output_folder)
add_model()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Select the model that you want to add to the Leaderboard.")
parser.add_argument("--model_id", type=str, required=True, help="HuggingFace model path that you want to evaluate.")
parser.add_argument("--execute_eval",type=bool, default=False, help="Select if you want to execute evaluation.")
parser.add_argument("--output_folder", type=str, help = "Select the folder in which the results are stored.")
args = parser.parse_args()
main()