Spaces:
Runtime error
Runtime error
add some data visualisations
Browse files
app.py
CHANGED
@@ -1,17 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
# from summarization import make_summary
|
4 |
import textrazor
|
5 |
from dotenv import load_dotenv
|
6 |
import os
|
7 |
import pandas as pd
|
8 |
import replicate
|
9 |
-
|
10 |
|
11 |
load_dotenv()
|
12 |
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
|
13 |
|
14 |
-
|
15 |
# Bob: Yes, speaking. Who's calling?
|
16 |
# Alice: Hey Bob, it's Alice from Acme Inc. We met at the conference last month.
|
17 |
# Bob: Oh, hey Alice! Good to hear from you. How can I help you today?
|
@@ -54,23 +53,43 @@ def make_output(text:str):
|
|
54 |
# df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
|
55 |
df = pd.concat([df, df2], ignore_index=True)
|
56 |
# print(entity.id)
|
57 |
-
|
|
|
58 |
return(df)
|
59 |
|
60 |
st.title("CultureScout NLP Tool π€")
|
61 |
|
62 |
# taking user inputs for context search
|
63 |
-
st.write("Enter Text You Need Help With
|
64 |
user_input = st.text_input("Text Here:", "")
|
65 |
|
66 |
if st.button("π Search It!"):
|
67 |
def predict_sentiment(data:str):
|
68 |
ans = make_output(user_input)
|
69 |
return ans
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# taking user inputs for summarization
|
73 |
-
st.write("Enter Text You Need to Summarize
|
74 |
user_input1 = st.text_area("Text Here:", "")
|
75 |
|
76 |
if st.button("πͺ Summarize"):
|
|
|
1 |
import streamlit as st
|
2 |
+
from collections import Counter
|
|
|
3 |
import textrazor
|
4 |
from dotenv import load_dotenv
|
5 |
import os
|
6 |
import pandas as pd
|
7 |
import replicate
|
8 |
+
import plotly.express as px
|
9 |
|
10 |
load_dotenv()
|
11 |
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
|
12 |
|
13 |
+
text_ = """Alice: Hi there, is this Bob?
|
14 |
# Bob: Yes, speaking. Who's calling?
|
15 |
# Alice: Hey Bob, it's Alice from Acme Inc. We met at the conference last month.
|
16 |
# Bob: Oh, hey Alice! Good to hear from you. How can I help you today?
|
|
|
53 |
# df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
|
54 |
df = pd.concat([df, df2], ignore_index=True)
|
55 |
# print(entity.id)
|
56 |
+
df1 = df.drop_duplicates()
|
57 |
+
|
58 |
return(df)
|
59 |
|
60 |
st.title("CultureScout NLP Tool π€")
|
61 |
|
62 |
# taking user inputs for context search
|
63 |
+
st.write("***Enter Text You Need Help With:***")
|
64 |
user_input = st.text_input("Text Here:", "")
|
65 |
|
66 |
if st.button("π Search It!"):
|
67 |
def predict_sentiment(data:str):
|
68 |
ans = make_output(user_input)
|
69 |
return ans
|
70 |
+
df = predict_sentiment(user_input)
|
71 |
+
df = df.drop_duplicates()
|
72 |
+
st.table(df)
|
73 |
+
|
74 |
+
id_df = predict_sentiment(user_input)['id']
|
75 |
+
id_freq = id_df.value_counts()
|
76 |
+
most_common_id = id_df.value_counts().index[0]
|
77 |
+
|
78 |
+
type_df = predict_sentiment(user_input)['type']
|
79 |
+
type_freq = type_df.value_counts()
|
80 |
+
most_common_type = type_df.value_counts().index[0]
|
81 |
+
|
82 |
+
|
83 |
+
st.bar_chart(id_freq)
|
84 |
+
st.bar_chart(type_freq)
|
85 |
+
|
86 |
+
st.write(f"Most appeared id is {most_common_id}.")
|
87 |
+
st.write(f"Most appeared type is {most_common_type}.")
|
88 |
+
st.write("""
|
89 |
+
""")
|
90 |
|
91 |
# taking user inputs for summarization
|
92 |
+
st.write("***Enter Text You Need to Summarize:***")
|
93 |
user_input1 = st.text_area("Text Here:", "")
|
94 |
|
95 |
if st.button("πͺ Summarize"):
|