clemsou's picture
Update app.py
75fbf00
raw
history blame
1.95 kB
import gradio as gr
import numpy as np
from torchvision.utils import save_image
import torch.nn as nn
import torch
import torchvision.datasets as datasets
import torchvision.transforms as T
from torch.utils.data import DataLoader, ConcatDataset
import torchvision.utils as vutils
import random
LATENT_VECTOR_DIM = 8 # latent vector dimension
class Generator_128(nn.Module):
def __init__(self, GPU_COUNT):
super(Generator_128, self).__init__()
self.GPU_COUNT = GPU_COUNT
self.main = nn.Sequential(
# LATENT_VECTOR_DIM x 1 x 1
nn.ConvTranspose2d(LATENT_VECTOR_DIM, 1024, 4, 1, 0, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(True),
nn.ConvTranspose2d(1024, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128,64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64,3, 4, 2, 1, bias=False),
nn.Tanh()
# 128 x 128 x 3
)
def forward(self, input):
return self.main(input)
trained_gen = Generator_128(0)
trained_gen.load_state_dict(torch.load("generator_epoch_900.h5",map_location=torch.device('cpu')))
def predict(seed, pokemon_count):
torch.manual_seed(seed)
z = torch.randn(pokemon_count, LATENT_VECTOR_DIM, 1, 1)
punks = trained_gen(z)
save_image(punks, "pokemon.png", normalize=True)
return 'pokemon.png'
gr.Interface(
predict,
inputs=[
gr.Slider(0, 1000, label='Seed', default=42),
gr.Slider(1, 8, label='Number of pokemon', step=1, default=10),
],
outputs="image",
).launch()