backend_demo / main_backend_lighteval.py
Shaltiel's picture
Adjusted caps and params
d3573c0
raw
history blame
5.41 kB
import logging
import pprint
from huggingface_hub import snapshot_download
logging.getLogger("openai").setLevel(logging.WARNING)
from src.backend.run_eval_suite_lighteval import run_evaluation
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request, set_requests_seen
from src.backend.sort_queue import sort_models_by_priority
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION
from src.about import TASKS_LIGHTEVAL
logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)
PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
def run_auto_eval():
current_pending_status = [PENDING_STATUS]
# pull the eval dataset from the hub and parse any eval requests
# check completed evals and set them to finished
check_completed_evals(
api=API,
checked_status=RUNNING_STATUS,
completed_status=FINISHED_STATUS,
failed_status=FAILED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
hf_repo_results=RESULTS_REPO,
local_dir_results=EVAL_RESULTS_PATH_BACKEND
)
# Get all eval request that are PENDING, if you want to run other evals, change this parameter
eval_requests, requests_seen = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
# Sort the evals by priority (first submitted first run)
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
if len(eval_requests) == 0:
return
eval_request = eval_requests[0]
pp.pprint(eval_request)
params_size = eval_request.params
if eval_request.precision == '4bit':
params_size //= 2
# For GPU
if not eval_request or params_size < 0:
raise ValueError("Couldn't detect number of params, please make sure the metadata is available")
elif params_size < 4:
instance_size, instance_type, cap = "x1", "nvidia-t4", 40
elif params_size < 8:
instance_size, instance_type, cap = "x1", "nvidia-a10g", 40
elif params_size < 30:
instance_size, instance_type, cap = "x4", "nvidia-a10g", 20
elif params_size < 45:
instance_size, instance_type, cap = "x2", "nvidia-a100", 5
elif params_size < 80:
instance_size, instance_type, cap = "x4", "nvidia-a100", 5
else:
set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=FAILED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
pp.pprint(dict(message="Number of params too big, can't run this model", params=eval_request.params))
return
counter_key = f'count_{instance_size}_{instance_type}'
if not counter_key in requests_seen:
requests_seen[counter_key] = 0
if requests_seen[counter_key] >= cap:
set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=FAILED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
pp.pprint(dict(message="Reached maximum cap for requests of this instance type this month", counter=counter_key, instance_type=instance_type, cap=cap))
return
# next, check to see who made the last commit to this repo - keep track of that. One person shouldn't commit more
# than 4 models in one month.
user = eval_request.user_info['name']
if user in requests_seen and len(requests_seen[user]) >= 4:
set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=FAILED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
pp.pprint(dict(message="Reached maximum cap for requests for this user this month", counter=counter_key, user=user))
return
if not user in requests_seen:
requests_seen[user] = []
requests_seen[user].append(dict(model_id=eval_request.model, revision=eval_request.revision))
requests_seen[counter_key] += 1
set_requests_seen(
api=API,
requests_seen=requests_seen,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND
)
set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=RUNNING_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
run_evaluation(
eval_request=eval_request,
task_names=TASKS_LIGHTEVAL,
local_dir=EVAL_RESULTS_PATH_BACKEND,
batch_size=25,
accelerator=ACCELERATOR,
region=REGION,
vendor=VENDOR,
instance_size=instance_size,
instance_type=instance_type,
limit=LIMIT
)
if __name__ == "__main__":
run_auto_eval()