Spaces:
Runtime error
Runtime error
Mariusz Kossakowski
commited on
Commit
·
c76a6b2
1
Parent(s):
d405df4
Add stuff in KPWR-NER dataset
Browse files
clarin_datasets/kpwr_ner_datasets.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from datasets import load_dataset
|
2 |
import streamlit as st
|
3 |
|
@@ -7,6 +8,7 @@ from clarin_datasets.dataset_to_show import DatasetToShow
|
|
7 |
class KpwrNerDataset(DatasetToShow):
|
8 |
def __init__(self):
|
9 |
DatasetToShow.__init__(self)
|
|
|
10 |
self.dataset_name = "clarin-pl/kpwr-ner"
|
11 |
self.description = """
|
12 |
KPWR-NER is a part the Polish Corpus of Wrocław University of Technology (Korpus Języka
|
@@ -36,11 +38,29 @@ class KpwrNerDataset(DatasetToShow):
|
|
36 |
self.data_dict = {
|
37 |
subset: raw_dataset[subset].to_pandas() for subset in self.subsets
|
38 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def show_dataset(self):
|
41 |
header = st.container()
|
42 |
description = st.container()
|
43 |
dataframe_head = st.container()
|
|
|
|
|
44 |
|
45 |
with header:
|
46 |
st.title(self.dataset_name)
|
@@ -48,3 +68,71 @@ class KpwrNerDataset(DatasetToShow):
|
|
48 |
with description:
|
49 |
st.header("Dataset description")
|
50 |
st.write(self.description)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
from datasets import load_dataset
|
3 |
import streamlit as st
|
4 |
|
|
|
8 |
class KpwrNerDataset(DatasetToShow):
|
9 |
def __init__(self):
|
10 |
DatasetToShow.__init__(self)
|
11 |
+
self.data_dict_named = None
|
12 |
self.dataset_name = "clarin-pl/kpwr-ner"
|
13 |
self.description = """
|
14 |
KPWR-NER is a part the Polish Corpus of Wrocław University of Technology (Korpus Języka
|
|
|
38 |
self.data_dict = {
|
39 |
subset: raw_dataset[subset].to_pandas() for subset in self.subsets
|
40 |
}
|
41 |
+
self.data_dict_named = {}
|
42 |
+
for subset in self.subsets:
|
43 |
+
references = raw_dataset[subset]["ner"]
|
44 |
+
references_named = [
|
45 |
+
[
|
46 |
+
raw_dataset[subset].features["ner"].feature.names[label]
|
47 |
+
for label in labels
|
48 |
+
]
|
49 |
+
for labels in references
|
50 |
+
]
|
51 |
+
self.data_dict_named[subset] = pd.DataFrame(
|
52 |
+
{
|
53 |
+
"tokens": self.data_dict[subset]["tokens"],
|
54 |
+
"ner": references_named,
|
55 |
+
}
|
56 |
+
)
|
57 |
|
58 |
def show_dataset(self):
|
59 |
header = st.container()
|
60 |
description = st.container()
|
61 |
dataframe_head = st.container()
|
62 |
+
class_distribution = st.container()
|
63 |
+
most_common_tokens = st.container()
|
64 |
|
65 |
with header:
|
66 |
st.title(self.dataset_name)
|
|
|
68 |
with description:
|
69 |
st.header("Dataset description")
|
70 |
st.write(self.description)
|
71 |
+
|
72 |
+
full_dataframe = pd.concat(self.data_dict.values(), axis="rows")
|
73 |
+
tokens_all = full_dataframe["tokens"].tolist()
|
74 |
+
tokens_all = [x for subarray in tokens_all for x in subarray]
|
75 |
+
labels_all = pd.concat(self.data_dict_named.values(), axis="rows")["ner"].tolist()
|
76 |
+
labels_all = [x for subarray in labels_all for x in subarray]
|
77 |
+
|
78 |
+
with dataframe_head:
|
79 |
+
df_to_show = full_dataframe.head(10)
|
80 |
+
st.header("First 10 observations of the dataset")
|
81 |
+
st.dataframe(df_to_show)
|
82 |
+
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
83 |
+
|
84 |
+
class_distribution_dict = {}
|
85 |
+
for subset in self.subsets:
|
86 |
+
all_labels_from_subset = self.data_dict_named[subset]["ner"].tolist()
|
87 |
+
all_labels_from_subset = [
|
88 |
+
x
|
89 |
+
for subarray in all_labels_from_subset
|
90 |
+
for x in subarray
|
91 |
+
if x != "O" and not x.startswith("I-")
|
92 |
+
]
|
93 |
+
all_labels_from_subset = pd.Series(all_labels_from_subset)
|
94 |
+
class_distribution_dict[subset] = (
|
95 |
+
all_labels_from_subset.value_counts(normalize=True)
|
96 |
+
.sort_index()
|
97 |
+
.reset_index()
|
98 |
+
.rename({"index": "class", 0: subset}, axis="columns")
|
99 |
+
)
|
100 |
+
|
101 |
+
class_distribution_df = pd.merge(
|
102 |
+
class_distribution_dict["train"],
|
103 |
+
class_distribution_dict["test"],
|
104 |
+
on="class",
|
105 |
+
)
|
106 |
+
with class_distribution:
|
107 |
+
st.header("Class distribution in each subset (without '0' and 'I-*')")
|
108 |
+
st.dataframe(class_distribution_df)
|
109 |
+
st.text_area(
|
110 |
+
label="LaTeX code", value=class_distribution_df.style.to_latex()
|
111 |
+
)
|
112 |
+
|
113 |
+
# Most common tokens from selected class (without 0)
|
114 |
+
full_df_unzipped = pd.DataFrame(
|
115 |
+
{
|
116 |
+
"token": tokens_all,
|
117 |
+
"ner": labels_all,
|
118 |
+
}
|
119 |
+
)
|
120 |
+
full_df_unzipped = full_df_unzipped.loc[full_df_unzipped["ner"] != 0]
|
121 |
+
possible_options = sorted(full_df_unzipped["ner"].unique())
|
122 |
+
with most_common_tokens:
|
123 |
+
st.header("10 most common tokens from selected class (without '0')")
|
124 |
+
selected_class = st.selectbox(
|
125 |
+
label="Select class to show", options=possible_options
|
126 |
+
)
|
127 |
+
df_to_show = (
|
128 |
+
full_df_unzipped.loc[full_df_unzipped["ner"] == selected_class]
|
129 |
+
.groupby(["token"])
|
130 |
+
.count()
|
131 |
+
.reset_index()
|
132 |
+
.rename({"ner": "no_of_occurrences"}, axis=1)
|
133 |
+
.sort_values(by="no_of_occurrences", ascending=False)
|
134 |
+
.reset_index(drop=True)
|
135 |
+
.head(10)
|
136 |
+
)
|
137 |
+
st.dataframe(df_to_show)
|
138 |
+
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|