Spaces:
Runtime error
Runtime error
Konrad Wojtasik
commited on
Commit
·
0c2b47c
1
Parent(s):
6f972fa
Init app
Browse files- app.py +224 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
3 |
+
import os, re
|
4 |
+
import torch
|
5 |
+
from rank_bm25 import BM25Okapi
|
6 |
+
from sklearn.feature_extraction import _stop_words
|
7 |
+
import string
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import base64
|
11 |
+
from io import StringIO
|
12 |
+
import validators
|
13 |
+
import nltk
|
14 |
+
import warnings
|
15 |
+
import streamlit as st
|
16 |
+
from PIL import Image
|
17 |
+
from beir.datasets.data_loader_hf import HFDataLoader
|
18 |
+
from beir.reranking.models.mono_t5 import MonoT5
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
warnings.filterwarnings("ignore")
|
23 |
+
|
24 |
+
auth_token = os.environ.get("auth_token")
|
25 |
+
|
26 |
+
@st.cache_data()
|
27 |
+
def load_data(dataset_type):
|
28 |
+
|
29 |
+
corpus, queries, qrels = HFDataLoader(hf_repo="clarin-knext/"+dataset_type, streaming=False, keep_in_memory=False).load(split="test")
|
30 |
+
corpus = [ doc['text']for doc in corpus]
|
31 |
+
queries = [ query['text']for query in queries]
|
32 |
+
return queries, corpus
|
33 |
+
|
34 |
+
@st.cache_data()
|
35 |
+
def bi_encode(bi_enc,passages):
|
36 |
+
|
37 |
+
global bi_encoder
|
38 |
+
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
39 |
+
bi_encoder = SentenceTransformer(bi_enc,use_auth_token=auth_token)
|
40 |
+
|
41 |
+
with st.spinner('Encoding passages into a vector space...'):
|
42 |
+
|
43 |
+
if bi_enc == 'intfloat/multilingual-e5-base':
|
44 |
+
|
45 |
+
corpus_embeddings = bi_encoder.encode(['passage: ' + sentence for sentence in passages], convert_to_tensor=True)
|
46 |
+
|
47 |
+
else:
|
48 |
+
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True)
|
49 |
+
|
50 |
+
|
51 |
+
st.success(f"Embeddings computed. Shape: {corpus_embeddings.shape}")
|
52 |
+
|
53 |
+
return bi_encoder, corpus_embeddings
|
54 |
+
|
55 |
+
@st.cache_resource()
|
56 |
+
def cross_encode(cross_encoder_name):
|
57 |
+
|
58 |
+
global cross_encoder
|
59 |
+
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
|
60 |
+
if cross_encoder_name == "clarin-knext/plt5-base-msmarco":
|
61 |
+
cross_encoder = MonoT5(cross_encoder_name, use_amp=False, token_true='▁prawda', token_false='▁fałsz')
|
62 |
+
else:
|
63 |
+
cross_encoder = CrossEncoder(cross_encoder_name)#('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1')
|
64 |
+
|
65 |
+
return cross_encoder
|
66 |
+
|
67 |
+
@st.cache_data()
|
68 |
+
def bm25_tokenizer(text):
|
69 |
+
|
70 |
+
# We also compare the results to lexical search (keyword search). Here, we use
|
71 |
+
# the BM25 algorithm which is implemented in the rank_bm25 package.
|
72 |
+
# We lower case our text and remove stop-words from indexing
|
73 |
+
tokenized_doc = []
|
74 |
+
for token in text.lower().split():
|
75 |
+
token = token.strip(string.punctuation)
|
76 |
+
|
77 |
+
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
|
78 |
+
tokenized_doc.append(token)
|
79 |
+
return tokenized_doc
|
80 |
+
|
81 |
+
@st.cache_resource()
|
82 |
+
def bm25_api(passages):
|
83 |
+
|
84 |
+
tokenized_corpus = []
|
85 |
+
|
86 |
+
for passage in passages:
|
87 |
+
tokenized_corpus.append(bm25_tokenizer(passage))
|
88 |
+
|
89 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
90 |
+
|
91 |
+
return bm25
|
92 |
+
|
93 |
+
bi_enc_options = ["sentence-transformers/distiluse-base-multilingual-cased-v1", 'intfloat/multilingual-e5-base', 'nthakur/mcontriever-base-msmarco']
|
94 |
+
# "all-mpnet-base-v2","multi-qa-MiniLM-L6-cos-v1",'intfloat/e5-base-v2',"neeva/query2query"
|
95 |
+
cross_enc_options = [ 'clarin-knext/plt5-base-msmarco', 'clarin-knext/herbert-base-reranker-msmarco', 'cross-encoder/mmarco-mMiniLMv2-L12-H384-v1']
|
96 |
+
datasets_options = ["nfcorpus-pl", "scifact-pl", "fiqa-pl"]
|
97 |
+
|
98 |
+
def display_df_as_table(model,top_k,score='score'):
|
99 |
+
# Display the df with text and scores as a table
|
100 |
+
df = pd.DataFrame([(hit[score], passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
|
101 |
+
df['Score'] = round(df['Score'],2)
|
102 |
+
|
103 |
+
return df
|
104 |
+
|
105 |
+
#Streamlit App
|
106 |
+
|
107 |
+
st.title("Retrieval BEIR-PL Demo")
|
108 |
+
|
109 |
+
"""
|
110 |
+
Example of retrieval over BEIR-PL dataset.
|
111 |
+
"""
|
112 |
+
|
113 |
+
|
114 |
+
# window_size = st.sidebar.slider("Paragraph Window Size",min_value=1,max_value=10,value=3,key=
|
115 |
+
# 'slider')
|
116 |
+
|
117 |
+
st.sidebar.title("Menu")
|
118 |
+
|
119 |
+
dataset_type = st.sidebar.selectbox("Dataset", options=datasets_options, key='dataset_select')
|
120 |
+
|
121 |
+
bi_encoder_type = st.sidebar.selectbox("Bi-Encoder", options=bi_enc_options, key='bi_select')
|
122 |
+
|
123 |
+
cross_encoder_type = st.sidebar.selectbox("Cross-Encoder", options=cross_enc_options, key='cross_select')
|
124 |
+
|
125 |
+
top_k = st.sidebar.slider("Number of Top Hits Generated",min_value=1,max_value=5,value=2)
|
126 |
+
|
127 |
+
hide_bm25 = st.sidebar.checkbox("Hide BM25 results?")
|
128 |
+
hide_biencoder = st.sidebar.checkbox("Hide Bi-Encoder results?")
|
129 |
+
hide_crossencoder = st.sidebar.checkbox("Hide Cross-Encoder results?")
|
130 |
+
|
131 |
+
# This function will search all wikipedia articles for passages that
|
132 |
+
# answer the query
|
133 |
+
def search_func(query, bi_encoder_type, top_k=top_k):
|
134 |
+
|
135 |
+
global bi_encoder, cross_encoder
|
136 |
+
|
137 |
+
st.subheader(f"Search Query:\n_{query}_")
|
138 |
+
|
139 |
+
##### BM25 search (lexical search) #####
|
140 |
+
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
|
141 |
+
top_n = np.argpartition(bm25_scores, -5)[-5:]
|
142 |
+
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
|
143 |
+
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
|
144 |
+
|
145 |
+
if not hide_bm25:
|
146 |
+
st.subheader(f"Top-{top_k} lexical search (BM25) hits")
|
147 |
+
|
148 |
+
bm25_df = display_df_as_table(bm25_hits,top_k)
|
149 |
+
st.write(bm25_df.to_html(index=False), unsafe_allow_html=True)
|
150 |
+
|
151 |
+
##### Sematic Search #####
|
152 |
+
# Encode the query using the bi-encoder and find potentially relevant passages
|
153 |
+
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
154 |
+
question_embedding = question_embedding.cpu()
|
155 |
+
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k,score_function=util.dot_score)
|
156 |
+
hits = hits[0] # Get the hits for the first query
|
157 |
+
|
158 |
+
##### Re-Ranking #####
|
159 |
+
# Now, score all retrieved passages with the cross_encoder
|
160 |
+
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
|
161 |
+
cross_scores = cross_encoder.predict(cross_inp)
|
162 |
+
|
163 |
+
# Sort results by the cross-encoder scores
|
164 |
+
for idx in range(len(cross_scores)):
|
165 |
+
hits[idx]['cross-score'] = cross_scores[idx]
|
166 |
+
|
167 |
+
if not hide_biencoder:
|
168 |
+
# Output of top-k hits from bi-encoder
|
169 |
+
st.markdown("\n-------------------------\n")
|
170 |
+
st.subheader(f"Top-{top_k} Bi-Encoder Retrieval hits")
|
171 |
+
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
|
172 |
+
|
173 |
+
biencoder_df = display_df_as_table(hits,top_k)
|
174 |
+
st.write(biencoder_df.to_html(index=False), unsafe_allow_html=True)
|
175 |
+
|
176 |
+
if not hide_crossencoder:
|
177 |
+
# Output of top-3 hits from re-ranker
|
178 |
+
st.markdown("\n-------------------------\n")
|
179 |
+
st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits")
|
180 |
+
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
181 |
+
|
182 |
+
rerank_df = display_df_as_table(hits,top_k,'cross-score')
|
183 |
+
st.write(rerank_df.to_html(index=False), unsafe_allow_html=True)
|
184 |
+
|
185 |
+
st.markdown("---")
|
186 |
+
|
187 |
+
def clear_text():
|
188 |
+
st.session_state["text_input"]= ""
|
189 |
+
|
190 |
+
|
191 |
+
question, passages = load_data(dataset_type)
|
192 |
+
|
193 |
+
st.write(pd.DataFrame(question[:5], columns=["Example queries from dataset"]).to_html(index=False, justify='center'), unsafe_allow_html=True)
|
194 |
+
|
195 |
+
search_query = st.text_input("Ask your question:",
|
196 |
+
value=question[0],
|
197 |
+
key="text_input")
|
198 |
+
|
199 |
+
|
200 |
+
col1, col2 = st.columns(2)
|
201 |
+
|
202 |
+
with col1:
|
203 |
+
search = st.button("Search",key='search_but', help='Click to Search!')
|
204 |
+
|
205 |
+
with col2:
|
206 |
+
clear = st.button("Clear Text Input", on_click=clear_text,key='clear',help='Click to clear the search query')
|
207 |
+
|
208 |
+
if search:
|
209 |
+
if bi_encoder_type:
|
210 |
+
|
211 |
+
with st.spinner(
|
212 |
+
text=f"Loading {bi_encoder_type} bi-encoder and embedding document into vector space. This might take a few seconds depending on the length of your document..."
|
213 |
+
):
|
214 |
+
bi_encoder, corpus_embeddings = bi_encode(bi_encoder_type,passages)
|
215 |
+
cross_encoder = cross_encode(cross_encoder_type)
|
216 |
+
bm25 = bm25_api(passages)
|
217 |
+
|
218 |
+
with st.spinner(
|
219 |
+
text="Embedding completed, searching for relevant text for given query and hits..."):
|
220 |
+
|
221 |
+
search_func(search_query,bi_encoder_type,top_k)
|
222 |
+
|
223 |
+
st.markdown("""
|
224 |
+
""")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
beir==1.0.1
|
2 |
+
sentence-transformers==2.2.2
|
3 |
+
transformers==4.29.1
|
4 |
+
torch==2.0.1
|
5 |
+
sentencepiece==0.1.95
|
6 |
+
protobuf==3.20.3
|
7 |
+
pandas
|
8 |
+
|