IR-Demo / app.py
Konrad Wojtasik
Limit to 100 passages
ffcea41
raw
history blame
8.11 kB
import requests
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import os, re
import torch
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
import numpy as np
import pandas as pd
import base64
from io import StringIO
import validators
import nltk
import warnings
import streamlit as st
from PIL import Image
from beir.datasets.data_loader_hf import HFDataLoader
from beir.reranking.models.mono_t5 import MonoT5
warnings.filterwarnings("ignore")
auth_token = os.environ.get("auth_token")
@st.cache_data()
def load_data(dataset_type):
corpus, queries, qrels = HFDataLoader(hf_repo="clarin-knext/"+dataset_type, streaming=False, keep_in_memory=False).load(split="test")
corpus = [ doc['text']for doc in corpus][:100]
queries = [ query['text']for query in queries]
return queries, corpus
@st.cache_data()
def bi_encode(bi_enc,passages):
global bi_encoder
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(bi_enc,use_auth_token=auth_token)
with st.spinner('Encoding passages into a vector space...'):
if bi_enc == 'intfloat/multilingual-e5-base':
corpus_embeddings = bi_encoder.encode(['passage: ' + sentence for sentence in passages], convert_to_tensor=True)
else:
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True)
st.success(f"Embeddings computed. Shape: {corpus_embeddings.shape}")
return bi_encoder, corpus_embeddings
@st.cache_resource()
def cross_encode(cross_encoder_name):
global cross_encoder
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
if cross_encoder_name == "clarin-knext/plt5-base-msmarco":
cross_encoder = MonoT5(cross_encoder_name, use_amp=False, token_true='▁prawda', token_false='▁fałsz')
else:
cross_encoder = CrossEncoder(cross_encoder_name)#('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1')
return cross_encoder
@st.cache_data()
def bm25_tokenizer(text):
# We also compare the results to lexical search (keyword search). Here, we use
# the BM25 algorithm which is implemented in the rank_bm25 package.
# We lower case our text and remove stop-words from indexing
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
tokenized_doc.append(token)
return tokenized_doc
@st.cache_resource()
def bm25_api(passages):
tokenized_corpus = []
for passage in passages:
tokenized_corpus.append(bm25_tokenizer(passage))
bm25 = BM25Okapi(tokenized_corpus)
return bm25
bi_enc_options = ["sentence-transformers/distiluse-base-multilingual-cased-v1", 'intfloat/multilingual-e5-base', 'nthakur/mcontriever-base-msmarco']
# "all-mpnet-base-v2","multi-qa-MiniLM-L6-cos-v1",'intfloat/e5-base-v2',"neeva/query2query"
cross_enc_options = [ 'clarin-knext/plt5-base-msmarco', 'clarin-knext/herbert-base-reranker-msmarco', 'cross-encoder/mmarco-mMiniLMv2-L12-H384-v1']
datasets_options = ["nfcorpus-pl", "scifact-pl", "fiqa-pl"]
def display_df_as_table(model,top_k,score='score'):
# Display the df with text and scores as a table
df = pd.DataFrame([(hit[score], passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
df['Score'] = round(df['Score'],2)
return df
#Streamlit App
st.title("Retrieval BEIR-PL Demo")
"""
Example of retrieval over BEIR-PL dataset.
"""
# window_size = st.sidebar.slider("Paragraph Window Size",min_value=1,max_value=10,value=3,key=
# 'slider')
st.sidebar.title("Menu")
dataset_type = st.sidebar.selectbox("Dataset", options=datasets_options, key='dataset_select')
bi_encoder_type = st.sidebar.selectbox("Bi-Encoder", options=bi_enc_options, key='bi_select')
cross_encoder_type = st.sidebar.selectbox("Cross-Encoder", options=cross_enc_options, key='cross_select')
top_k = st.sidebar.slider("Number of Top Hits Generated",min_value=1,max_value=5,value=2)
hide_bm25 = st.sidebar.checkbox("Hide BM25 results?")
hide_biencoder = st.sidebar.checkbox("Hide Bi-Encoder results?")
hide_crossencoder = st.sidebar.checkbox("Hide Cross-Encoder results?")
# This function will search all wikipedia articles for passages that
# answer the query
def search_func(query, bi_encoder_type, top_k=top_k):
global bi_encoder, cross_encoder
st.subheader(f"Search Query:\n_{query}_")
##### BM25 search (lexical search) #####
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
top_n = np.argpartition(bm25_scores, -5)[-5:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
if not hide_bm25:
st.subheader(f"Top-{top_k} lexical search (BM25) hits")
bm25_df = display_df_as_table(bm25_hits,top_k)
st.write(bm25_df.to_html(index=False), unsafe_allow_html=True)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
question_embedding = question_embedding.cpu()
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k,score_function=util.dot_score)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
if not hide_biencoder:
# Output of top-k hits from bi-encoder
st.markdown("\n-------------------------\n")
st.subheader(f"Top-{top_k} Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
biencoder_df = display_df_as_table(hits,top_k)
st.write(biencoder_df.to_html(index=False), unsafe_allow_html=True)
if not hide_crossencoder:
# Output of top-3 hits from re-ranker
st.markdown("\n-------------------------\n")
st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
rerank_df = display_df_as_table(hits,top_k,'cross-score')
st.write(rerank_df.to_html(index=False), unsafe_allow_html=True)
st.markdown("---")
def clear_text():
st.session_state["text_input"]= ""
question, passages = load_data(dataset_type)
st.write(pd.DataFrame(question[:5], columns=["Example queries from dataset"]).to_html(index=False, justify='center'), unsafe_allow_html=True)
search_query = st.text_input("Ask your question:",
value=question[0],
key="text_input")
col1, col2 = st.columns(2)
with col1:
search = st.button("Search",key='search_but', help='Click to Search!')
with col2:
clear = st.button("Clear Text Input", on_click=clear_text,key='clear',help='Click to clear the search query')
if search:
if bi_encoder_type:
with st.spinner(
text=f"Loading {bi_encoder_type} bi-encoder and embedding document into vector space. This might take a few seconds depending on the length of your document..."
):
bi_encoder, corpus_embeddings = bi_encode(bi_encoder_type,passages)
cross_encoder = cross_encode(cross_encoder_type)
bm25 = bm25_api(passages)
with st.spinner(
text="Embedding completed, searching for relevant text for given query and hits..."):
search_func(search_query,bi_encoder_type,top_k)
st.markdown("""
""")