Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
| from datasets import load_dataset | |
| import gradio as gr | |
| # Load the classifier pipeline for sentiment analysis (if needed) | |
| classifier = pipeline("sentiment-analysis") | |
| # Load model and tokenizer | |
| model_name = "ckcl/mexc_price_model" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Use AutoModelForSequenceClassification or the appropriate model class | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| # Load dataset | |
| ds = load_dataset("ckcl/BTC_USDT_dataset") | |
| # Define the prediction function | |
| def predict(input_text): | |
| # Tokenize input | |
| inputs = tokenizer(input_text, return_tensors="pt") | |
| # Make predictions | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # Extract prediction results | |
| predictions = torch.argmax(outputs.logits, dim=-1) | |
| return str(predictions.item()) | |
| # Create Gradio interface | |
| iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="MEXC Contract Prediction", description="Predict contract prices for MEXC.") | |
| # Launch the application | |
| iface.launch() | |