|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
import evaluate |
|
import datasets |
|
from collections import Counter |
|
import numpy as np |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:module, |
|
title = {A great new module}, |
|
authors={huggingface, Inc.}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This module calculates the unigram precision, recall, and f1 score. |
|
""" |
|
|
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates how good are predictions given some references, using certain scores |
|
Args: |
|
predictions: list of list of int (token) |
|
references: list of list of int (tokens) |
|
Returns: |
|
f1: the unigram f1 score. |
|
precision: the unigram accuracy. |
|
recall: the unigram recall. |
|
Examples: |
|
|
|
>>> my_new_module = evaluate.load("ckb/unigram") |
|
>>> results = my_new_module.compute(references=[[0, 1]], predictions=[[0, 1]]) |
|
>>> print(results) |
|
{'accuracy': 1.0} |
|
""" |
|
|
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class unigram(evaluate.Metric): |
|
"""TODO: Short description of my evaluation module.""" |
|
|
|
def _info(self): |
|
|
|
return evaluate.MetricInfo( |
|
|
|
module_type="metric", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
|
features=datasets.Features({ |
|
'predictions': datasets.Value('int64'), |
|
'references': datasets.Value('int64'), |
|
}), |
|
|
|
homepage="http://module.homepage", |
|
|
|
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], |
|
reference_urls=["http://path.to.reference.url/new_module"] |
|
) |
|
|
|
|
|
def _prec_recall_f1_score(pred_items, gold_items): |
|
""" |
|
Compute precision, recall and f1 given a set of gold and prediction items. |
|
:param pred_items: iterable of predicted values |
|
:param gold_items: iterable of gold values |
|
:return: tuple (p, r, f1) for precision, recall, f1 |
|
""" |
|
common = Counter(gold_items) & Counter(pred_items) |
|
num_same = sum(common.values()) |
|
if num_same == 0: |
|
return 0, 0, 0 |
|
precision = 1.0 * num_same / len(pred_items) |
|
recall = 1.0 * num_same / len(gold_items) |
|
f1 = (2 * precision * recall) / (precision + recall) |
|
return np.array(precision, recall, f1) |
|
|
|
def _compute(self, predictions, references): |
|
"""Returns the scores""" |
|
|
|
score = sum(self._prec_recall_f1_score(i,j) for i, j in zip(predictions, references)) / len(predictions) |
|
return { |
|
"precision": score[0], |
|
"recall": score[1], |
|
"f1": score[2], |
|
|
|
} |
|
|