Spaces:
Running
Running
Update app.R
Browse files
app.R
CHANGED
|
@@ -27,6 +27,7 @@ library(parallel) # For detecting CPU cores
|
|
| 27 |
# ---------------------------------------------------------
|
| 28 |
# HELPER FUNCTIONS (BASE R)
|
| 29 |
# ---------------------------------------------------------
|
|
|
|
| 30 |
# 1) Compute Hotelling's T^2 in base R
|
| 31 |
baseR_hotellingT2 <- function(X, W) {
|
| 32 |
# For a single assignment W:
|
|
@@ -52,12 +53,11 @@ baseR_hotellingT2 <- function(X, W) {
|
|
| 52 |
}
|
| 53 |
|
| 54 |
# 2) Generate randomizations in base R, filtering by acceptance probability
|
| 55 |
-
# using T^2 and keep the best (lowest) fraction.
|
| 56 |
baseR_generate_randomizations <- function(n_units, n_treated, X, accept_prob, random_type,
|
| 57 |
max_draws, batch_size) {
|
| 58 |
|
| 59 |
# For safety, check if exact enumerations will explode:
|
| 60 |
-
# If random_type == "exact", we do combn(n_units, n_treated), which might be huge
|
| 61 |
if (random_type == "exact") {
|
| 62 |
n_comb_total <- choose(n_units, n_treated)
|
| 63 |
if (n_comb_total > 1e6) {
|
|
@@ -136,21 +136,134 @@ baseR_generate_randomizations <- function(n_units, n_treated, X, accept_prob, ra
|
|
| 136 |
list(randomizations = assignment_mat_accepted, balance = T2vals_accepted)
|
| 137 |
}
|
| 138 |
|
| 139 |
-
#
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# for each candidate assignment, compute diff in means on obsY
|
| 147 |
-
diffs <- apply(allW, 1, function(w)
|
| 148 |
-
mean(obsY[w == 1]) - mean(obsY[w == 0])
|
| 149 |
-
})
|
| 150 |
|
| 151 |
# p-value = fraction whose absolute diff >= observed
|
| 152 |
-
pval <- mean(abs(diffs) >= abs(
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
}
|
| 155 |
|
| 156 |
# ---------------------------------------------------------
|
|
@@ -310,7 +423,7 @@ ui <- dashboardPage(
|
|
| 310 |
|
| 311 |
box(width = 8, title = "Test Results", status = "info", solidHeader = TRUE,
|
| 312 |
|
| 313 |
-
# First row: p-value and observed effect
|
| 314 |
fluidRow(
|
| 315 |
column(width = 6, valueBoxOutput("pvalue_box", width = 12)),
|
| 316 |
column(width = 6, valueBoxOutput("tauobs_box", width = 12))
|
|
@@ -322,7 +435,19 @@ ui <- dashboardPage(
|
|
| 322 |
column(width = 6, valueBoxOutput("baseR_test_time_box", width = 12))
|
| 323 |
),
|
| 324 |
|
|
|
|
| 325 |
uiOutput("fi_text"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
br(),
|
| 327 |
plotOutput("test_plot", height = "280px")
|
| 328 |
)
|
|
@@ -390,7 +515,6 @@ server <- function(input, output, session) {
|
|
| 390 |
"Number treated cannot exceed total units.")
|
| 391 |
)
|
| 392 |
|
| 393 |
-
# ------------------ COMPUTING RESULTS TOGGLE ------------------
|
| 394 |
withProgress(message = "Computing results...", value = 0, {
|
| 395 |
|
| 396 |
# =========== 1) fastrerandomize generation timing ===========
|
|
@@ -500,7 +624,6 @@ server <- function(input, output, session) {
|
|
| 500 |
# Hardware info (CPU cores, GPU note)
|
| 501 |
output$hardware_info <- renderUI({
|
| 502 |
num_cores <- detectCores(logical = TRUE)
|
| 503 |
-
# Basic note about GPU (this can be expanded if you have specialized checks)
|
| 504 |
HTML(paste(
|
| 505 |
"<strong>System Hardware Info:</strong><br/>",
|
| 506 |
"Number of CPU cores detected:", num_cores, "<br/>",
|
|
@@ -517,8 +640,6 @@ server <- function(input, output, session) {
|
|
| 517 |
observeEvent(input$simulateY_btn, {
|
| 518 |
req(RerandResult())
|
| 519 |
rr <- RerandResult()
|
| 520 |
-
|
| 521 |
-
# We'll just use the first accepted randomization as the "observed" assignment
|
| 522 |
if (is.null(rr$randomizations) || nrow(rr$randomizations) < 1) {
|
| 523 |
showNotification("No accepted randomizations found. Cannot simulate Y for the 'observed' assignment.", type = "error")
|
| 524 |
return(NULL)
|
|
@@ -564,7 +685,6 @@ server <- function(input, output, session) {
|
|
| 564 |
baseR_test_time <- reactiveVal(NULL)
|
| 565 |
|
| 566 |
observeEvent(input$run_randtest_btn, {
|
| 567 |
-
# ------------------ COMPUTING RESULTS TOGGLE ------------------
|
| 568 |
withProgress(message = "Computing results...", value = 0, {
|
| 569 |
|
| 570 |
req(RerandResult())
|
|
@@ -599,7 +719,6 @@ server <- function(input, output, session) {
|
|
| 599 |
fastrand_test_time(difftime(t1_testfast, t0_testfast, units = "secs"))
|
| 600 |
|
| 601 |
# =========== 2) base R randomization test timing ===========
|
| 602 |
-
# We must also have the base R set of randomizations
|
| 603 |
req(RerandResult_base())
|
| 604 |
rr_base <- RerandResult_base()
|
| 605 |
if (is.null(rr_base$randomizations) || nrow(rr_base$randomizations) < 1) {
|
|
@@ -613,7 +732,8 @@ server <- function(input, output, session) {
|
|
| 613 |
baseR_randomization_test(
|
| 614 |
obsW = obsW,
|
| 615 |
obsY = obsY,
|
| 616 |
-
allW = rr_base$randomizations
|
|
|
|
| 617 |
)
|
| 618 |
}, error = function(e) e)
|
| 619 |
t1_testbase <- Sys.time()
|
|
@@ -632,18 +752,18 @@ server <- function(input, output, session) {
|
|
| 632 |
output$pvalue_box <- renderValueBox({
|
| 633 |
rt <- RandTestResult()
|
| 634 |
if (is.null(rt)) {
|
| 635 |
-
valueBox("---", "p-value", icon = icon("question"), color = "blue")
|
| 636 |
} else {
|
| 637 |
-
valueBox(round(rt$p_value, 4), "p-value", icon = icon("list-check"), color = "purple")
|
| 638 |
}
|
| 639 |
})
|
| 640 |
|
| 641 |
output$tauobs_box <- renderValueBox({
|
| 642 |
rt <- RandTestResult()
|
| 643 |
if (is.null(rt)) {
|
| 644 |
-
valueBox("---", "Observed Effect", icon = icon("question"), color = "maroon")
|
| 645 |
} else {
|
| 646 |
-
valueBox(round(rt$tau_obs, 4), "Observed Effect", icon = icon("bullseye"), color = "maroon")
|
| 647 |
}
|
| 648 |
})
|
| 649 |
|
|
@@ -668,7 +788,7 @@ server <- function(input, output, session) {
|
|
| 668 |
}
|
| 669 |
})
|
| 670 |
|
| 671 |
-
# If we have a fiducial interval, display it
|
| 672 |
output$fi_text <- renderUI({
|
| 673 |
rt <- RandTestResult()
|
| 674 |
if (is.null(rt) || is.null(rt$FI)) {
|
|
@@ -678,29 +798,43 @@ server <- function(input, output, session) {
|
|
| 678 |
fi_upper <- round(rt$FI[2], 4)
|
| 679 |
|
| 680 |
tagList(
|
| 681 |
-
strong("Fiducial Interval (95%):"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
p(sprintf("[%.4f, %.4f]", fi_lower, fi_upper))
|
| 683 |
)
|
| 684 |
})
|
| 685 |
|
| 686 |
# A simple plot for the randomization distribution (for demonstration).
|
| 687 |
-
# In this
|
| 688 |
# so we simply show the observed effect as a point.
|
| 689 |
output$test_plot <- renderPlot({
|
| 690 |
rt <- RandTestResult()
|
| 691 |
if (is.null(rt)) {
|
| 692 |
-
# no test run yet
|
| 693 |
plot.new()
|
| 694 |
title("No test results yet.")
|
| 695 |
return(NULL)
|
| 696 |
}
|
| 697 |
-
# Just display the observed effect
|
| 698 |
obs_val <- rt$tau_obs
|
| 699 |
|
| 700 |
ggplot(data.frame(x = obs_val, y = 0), aes(x, y)) +
|
| 701 |
geom_point(size=4, color="red") +
|
| 702 |
xlim(c(obs_val - abs(obs_val)*2 - 1, obs_val + abs(obs_val)*2 + 1)) +
|
| 703 |
-
labs(title = "Observed Treatment Effect",
|
| 704 |
x = "Effect Size", y = "") +
|
| 705 |
theme_minimal(base_size = 14) +
|
| 706 |
geom_vline(xintercept = 0, linetype="dashed", color="gray40")
|
|
|
|
| 27 |
# ---------------------------------------------------------
|
| 28 |
# HELPER FUNCTIONS (BASE R)
|
| 29 |
# ---------------------------------------------------------
|
| 30 |
+
|
| 31 |
# 1) Compute Hotelling's T^2 in base R
|
| 32 |
baseR_hotellingT2 <- function(X, W) {
|
| 33 |
# For a single assignment W:
|
|
|
|
| 53 |
}
|
| 54 |
|
| 55 |
# 2) Generate randomizations in base R, filtering by acceptance probability
|
| 56 |
+
# using T^2 and keep the best (lowest) fraction.
|
| 57 |
baseR_generate_randomizations <- function(n_units, n_treated, X, accept_prob, random_type,
|
| 58 |
max_draws, batch_size) {
|
| 59 |
|
| 60 |
# For safety, check if exact enumerations will explode:
|
|
|
|
| 61 |
if (random_type == "exact") {
|
| 62 |
n_comb_total <- choose(n_units, n_treated)
|
| 63 |
if (n_comb_total > 1e6) {
|
|
|
|
| 136 |
list(randomizations = assignment_mat_accepted, balance = T2vals_accepted)
|
| 137 |
}
|
| 138 |
|
| 139 |
+
# Helper: compute difference in means quickly
|
| 140 |
+
diff_in_means <- function(Y, W) {
|
| 141 |
+
mean(Y[W == 1]) - mean(Y[W == 0])
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
# Helper: for a given tau, relabel outcomes and compute the difference in means for a single permutation
|
| 145 |
+
compute_diff_at_tau_for_oneW <- function(Wprime, obsY, obsW, tau) {
|
| 146 |
+
# Y0_under_null = obsY - obsW * tau
|
| 147 |
+
Y0 <- obsY - obsW * tau
|
| 148 |
+
# Y1_under_null = Y0 + tau
|
| 149 |
+
# But in practice, for assignment Wprime, the observed outcome is:
|
| 150 |
+
# Y'(i) = Y0(i) if Wprime(i) = 0, or Y0(i) + tau if Wprime(i)=1
|
| 151 |
+
Yprime <- Y0
|
| 152 |
+
Yprime[Wprime == 1] <- Y0[Wprime == 1] + tau
|
| 153 |
+
diff_in_means(Yprime, Wprime)
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
# 3a) For base R randomization test: difference in means + optional p-value
|
| 157 |
+
# *without* fiducial interval
|
| 158 |
+
# (We will incorporate the FI logic below.)
|
| 159 |
+
baseR_randomization_test <- function(obsW, obsY, allW, findFI = FALSE, alpha = 0.05) {
|
| 160 |
+
# Observed diff in means
|
| 161 |
+
tau_obs <- diff_in_means(obsY, obsW)
|
| 162 |
|
| 163 |
# for each candidate assignment, compute diff in means on obsY
|
| 164 |
+
diffs <- apply(allW, 1, function(w) diff_in_means(obsY, w))
|
|
|
|
|
|
|
| 165 |
|
| 166 |
# p-value = fraction whose absolute diff >= observed
|
| 167 |
+
pval <- mean(abs(diffs) >= abs(tau_obs))
|
| 168 |
+
|
| 169 |
+
# optionally compute a fiducial interval
|
| 170 |
+
FI <- NULL
|
| 171 |
+
if (findFI) {
|
| 172 |
+
FI <- baseR_find_fiducial_interval(obsW, obsY, allW, tau_obs, alpha = alpha)
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
list(p_value = pval, tau_obs = tau_obs, FI = FI)
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
# 3b) The fiducial interval logic for base R, mirroring the approach in fastrerandomize:
|
| 179 |
+
# 1) Attempt to find a wide lower and upper bracket via random updates
|
| 180 |
+
# 2) Then a grid search in [lowerBound-1, upperBound*2] for which tau are accepted.
|
| 181 |
+
baseR_find_fiducial_interval <- function(obsW, obsY, allW, tau_obs, alpha = 0.05, c_initial = 2,
|
| 182 |
+
n_search_attempts = 500) {
|
| 183 |
+
|
| 184 |
+
# random bracket approach
|
| 185 |
+
lowerBound_est <- tau_obs - 3*tau_obs
|
| 186 |
+
upperBound_est <- tau_obs + 3*tau_obs
|
| 187 |
+
|
| 188 |
+
z_alpha <- qnorm(1 - alpha)
|
| 189 |
+
k <- 2 / (z_alpha * (2 * pi)^(-1/2) * exp(-z_alpha^2 / 2))
|
| 190 |
+
|
| 191 |
+
# For each iteration, pick one random assignment from allW
|
| 192 |
+
# then see how the implied difference changes, and update the bracket
|
| 193 |
+
n_allW <- nrow(allW)
|
| 194 |
+
for (step_t in seq_len(n_search_attempts)) {
|
| 195 |
+
# pick random assignment
|
| 196 |
+
idx <- sample.int(n_allW, 1)
|
| 197 |
+
Wprime <- allW[idx, ]
|
| 198 |
+
|
| 199 |
+
# ~~~~~ update lowerBound ~~~~~
|
| 200 |
+
# Y0 = obsY - obsW * lowerBound_est
|
| 201 |
+
# Y'(Wprime) = ...
|
| 202 |
+
lowerY0 <- obsY - obsW * lowerBound_est
|
| 203 |
+
Yprime_lower <- lowerY0
|
| 204 |
+
Yprime_lower[Wprime == 1] <- lowerY0[Wprime == 1] + lowerBound_est
|
| 205 |
+
|
| 206 |
+
tau_at_step_lower <- diff_in_means(Yprime_lower, Wprime)
|
| 207 |
+
|
| 208 |
+
c_step <- c_initial
|
| 209 |
+
# difference from obs
|
| 210 |
+
delta <- tau_obs - tau_at_step_lower
|
| 211 |
+
|
| 212 |
+
if (tau_at_step_lower < tau_obs) {
|
| 213 |
+
# move lowerBound up
|
| 214 |
+
lowerBound_est <- lowerBound_est + k * delta * (alpha/2) / step_t
|
| 215 |
+
} else {
|
| 216 |
+
# move it down
|
| 217 |
+
lowerBound_est <- lowerBound_est - k * (-delta) * (1 - alpha/2) / step_t
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
# ~~~~~ update upperBound ~~~~~
|
| 221 |
+
upperY0 <- obsY - obsW * upperBound_est
|
| 222 |
+
Yprime_upper <- upperY0
|
| 223 |
+
Yprime_upper[Wprime == 1] <- upperY0[Wprime == 1] + upperBound_est
|
| 224 |
+
|
| 225 |
+
tau_at_step_upper <- diff_in_means(Yprime_upper, Wprime)
|
| 226 |
+
delta2 <- tau_at_step_upper - tau_obs
|
| 227 |
+
|
| 228 |
+
if (tau_at_step_upper > tau_obs) {
|
| 229 |
+
# move upperBound down
|
| 230 |
+
upperBound_est <- upperBound_est - k * delta2 * (alpha/2) / step_t
|
| 231 |
+
} else {
|
| 232 |
+
# move it up
|
| 233 |
+
upperBound_est <- upperBound_est + k * (-delta2) * (1 - alpha/2) / step_t
|
| 234 |
+
}
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
# Now we do a grid search from (lowerBound_est - 1) to (upperBound_est * 2)
|
| 238 |
+
# in e.g. 100 steps, seeing which tau is "accepted".
|
| 239 |
+
# We'll define "accepted" if the min of:
|
| 240 |
+
# fraction(tau_obs >= distribution_of(tau_pseudo))
|
| 241 |
+
# fraction(tau_obs <= distribution_of(tau_pseudo))
|
| 242 |
+
# is > alpha, i.e. do not reject
|
| 243 |
+
grid_lower <- lowerBound_est - 1
|
| 244 |
+
grid_upper <- upperBound_est * 2
|
| 245 |
+
tau_seq <- seq(grid_lower, grid_upper, length.out = 100)
|
| 246 |
+
|
| 247 |
+
accepted <- logical(length(tau_seq))
|
| 248 |
+
for (i in seq_along(tau_seq)) {
|
| 249 |
+
tau_pseudo <- tau_seq[i]
|
| 250 |
+
# for each row in allW, compute the diff in means if the true effect = tau_pseudo
|
| 251 |
+
# distribution_of(tau_pseudo)
|
| 252 |
+
diffs_pseudo <- apply(allW, 1, function(wp) compute_diff_at_tau_for_oneW(wp, obsY, obsW, tau_pseudo))
|
| 253 |
+
# Then see how often diffs_pseudo >= tau_obs (or <= tau_obs)
|
| 254 |
+
frac_ge <- mean(diffs_pseudo >= tau_obs)
|
| 255 |
+
frac_le <- mean(diffs_pseudo <= tau_obs)
|
| 256 |
+
# min(...) is the typical "two-sided" approach
|
| 257 |
+
accepted[i] <- (min(frac_ge, frac_le) > alpha / 2) # or 0.05 if we want 5% test
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
if (!any(accepted)) {
|
| 261 |
+
# no values accepted => degenerate?
|
| 262 |
+
# We'll return the bracket we found, or NA.
|
| 263 |
+
return(c(NA, NA))
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
c(min(tau_seq[accepted]), max(tau_seq[accepted]))
|
| 267 |
}
|
| 268 |
|
| 269 |
# ---------------------------------------------------------
|
|
|
|
| 423 |
|
| 424 |
box(width = 8, title = "Test Results", status = "info", solidHeader = TRUE,
|
| 425 |
|
| 426 |
+
# First row: p-value and observed effect (fastrerandomize)
|
| 427 |
fluidRow(
|
| 428 |
column(width = 6, valueBoxOutput("pvalue_box", width = 12)),
|
| 429 |
column(width = 6, valueBoxOutput("tauobs_box", width = 12))
|
|
|
|
| 435 |
column(width = 6, valueBoxOutput("baseR_test_time_box", width = 12))
|
| 436 |
),
|
| 437 |
|
| 438 |
+
# Show fastrerandomize FI
|
| 439 |
uiOutput("fi_text"),
|
| 440 |
+
|
| 441 |
+
# Now show Base R results in a separate row
|
| 442 |
+
tags$hr(),
|
| 443 |
+
fluidRow(
|
| 444 |
+
column(width = 6, valueBoxOutput("pvalue_box_baseR", width = 12)),
|
| 445 |
+
column(width = 6, valueBoxOutput("tauobs_box_baseR", width = 12))
|
| 446 |
+
),
|
| 447 |
+
fluidRow(
|
| 448 |
+
column(width = 12, uiOutput("fi_text_baseR"))
|
| 449 |
+
),
|
| 450 |
+
|
| 451 |
br(),
|
| 452 |
plotOutput("test_plot", height = "280px")
|
| 453 |
)
|
|
|
|
| 515 |
"Number treated cannot exceed total units.")
|
| 516 |
)
|
| 517 |
|
|
|
|
| 518 |
withProgress(message = "Computing results...", value = 0, {
|
| 519 |
|
| 520 |
# =========== 1) fastrerandomize generation timing ===========
|
|
|
|
| 624 |
# Hardware info (CPU cores, GPU note)
|
| 625 |
output$hardware_info <- renderUI({
|
| 626 |
num_cores <- detectCores(logical = TRUE)
|
|
|
|
| 627 |
HTML(paste(
|
| 628 |
"<strong>System Hardware Info:</strong><br/>",
|
| 629 |
"Number of CPU cores detected:", num_cores, "<br/>",
|
|
|
|
| 640 |
observeEvent(input$simulateY_btn, {
|
| 641 |
req(RerandResult())
|
| 642 |
rr <- RerandResult()
|
|
|
|
|
|
|
| 643 |
if (is.null(rr$randomizations) || nrow(rr$randomizations) < 1) {
|
| 644 |
showNotification("No accepted randomizations found. Cannot simulate Y for the 'observed' assignment.", type = "error")
|
| 645 |
return(NULL)
|
|
|
|
| 685 |
baseR_test_time <- reactiveVal(NULL)
|
| 686 |
|
| 687 |
observeEvent(input$run_randtest_btn, {
|
|
|
|
| 688 |
withProgress(message = "Computing results...", value = 0, {
|
| 689 |
|
| 690 |
req(RerandResult())
|
|
|
|
| 719 |
fastrand_test_time(difftime(t1_testfast, t0_testfast, units = "secs"))
|
| 720 |
|
| 721 |
# =========== 2) base R randomization test timing ===========
|
|
|
|
| 722 |
req(RerandResult_base())
|
| 723 |
rr_base <- RerandResult_base()
|
| 724 |
if (is.null(rr_base$randomizations) || nrow(rr_base$randomizations) < 1) {
|
|
|
|
| 732 |
baseR_randomization_test(
|
| 733 |
obsW = obsW,
|
| 734 |
obsY = obsY,
|
| 735 |
+
allW = rr_base$randomizations,
|
| 736 |
+
findFI = input$findFI # if user wants the FI, do so
|
| 737 |
)
|
| 738 |
}, error = function(e) e)
|
| 739 |
t1_testbase <- Sys.time()
|
|
|
|
| 752 |
output$pvalue_box <- renderValueBox({
|
| 753 |
rt <- RandTestResult()
|
| 754 |
if (is.null(rt)) {
|
| 755 |
+
valueBox("---", "p-value (fastrerandomize)", icon = icon("question"), color = "blue")
|
| 756 |
} else {
|
| 757 |
+
valueBox(round(rt$p_value, 4), "p-value (fastrerandomize)", icon = icon("list-check"), color = "purple")
|
| 758 |
}
|
| 759 |
})
|
| 760 |
|
| 761 |
output$tauobs_box <- renderValueBox({
|
| 762 |
rt <- RandTestResult()
|
| 763 |
if (is.null(rt)) {
|
| 764 |
+
valueBox("---", "Observed Effect (fastrerandomize)", icon = icon("question"), color = "maroon")
|
| 765 |
} else {
|
| 766 |
+
valueBox(round(rt$tau_obs, 4), "Observed Effect (fastrerandomize)", icon = icon("bullseye"), color = "maroon")
|
| 767 |
}
|
| 768 |
})
|
| 769 |
|
|
|
|
| 788 |
}
|
| 789 |
})
|
| 790 |
|
| 791 |
+
# If we have a fiducial interval from fastrerandomize, display it
|
| 792 |
output$fi_text <- renderUI({
|
| 793 |
rt <- RandTestResult()
|
| 794 |
if (is.null(rt) || is.null(rt$FI)) {
|
|
|
|
| 798 |
fi_upper <- round(rt$FI[2], 4)
|
| 799 |
|
| 800 |
tagList(
|
| 801 |
+
strong("Fiducial Interval (fastrerandomize, 95%):"),
|
| 802 |
+
p(sprintf("[%.4f, %.4f]", fi_lower, fi_upper))
|
| 803 |
+
)
|
| 804 |
+
})
|
| 805 |
+
|
| 806 |
+
# If we have a fiducial interval from base R, display it
|
| 807 |
+
output$fi_text_baseR <- renderUI({
|
| 808 |
+
rt <- RandTestResult_base()
|
| 809 |
+
if (is.null(rt) || is.null(rt$FI)) {
|
| 810 |
+
return(NULL)
|
| 811 |
+
}
|
| 812 |
+
fi_lower <- round(rt$FI[1], 4)
|
| 813 |
+
fi_upper <- round(rt$FI[2], 4)
|
| 814 |
+
|
| 815 |
+
tagList(
|
| 816 |
+
strong("Fiducial Interval (base R, 95%):"),
|
| 817 |
p(sprintf("[%.4f, %.4f]", fi_lower, fi_upper))
|
| 818 |
)
|
| 819 |
})
|
| 820 |
|
| 821 |
# A simple plot for the randomization distribution (for demonstration).
|
| 822 |
+
# In this app, we do not store the entire distribution from either method,
|
| 823 |
# so we simply show the observed effect as a point.
|
| 824 |
output$test_plot <- renderPlot({
|
| 825 |
rt <- RandTestResult()
|
| 826 |
if (is.null(rt)) {
|
|
|
|
| 827 |
plot.new()
|
| 828 |
title("No test results yet.")
|
| 829 |
return(NULL)
|
| 830 |
}
|
| 831 |
+
# Just display the observed effect from fastrerandomize
|
| 832 |
obs_val <- rt$tau_obs
|
| 833 |
|
| 834 |
ggplot(data.frame(x = obs_val, y = 0), aes(x, y)) +
|
| 835 |
geom_point(size=4, color="red") +
|
| 836 |
xlim(c(obs_val - abs(obs_val)*2 - 1, obs_val + abs(obs_val)*2 + 1)) +
|
| 837 |
+
labs(title = "Observed Treatment Effect (fastrerandomize)",
|
| 838 |
x = "Effect Size", y = "") +
|
| 839 |
theme_minimal(base_size = 14) +
|
| 840 |
geom_vline(xintercept = 0, linetype="dashed", color="gray40")
|