Spaces:
Runtime error
Runtime error
import datasets | |
import torch | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
dataset = datasets.load_dataset('beans') | |
feature_extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") | |
model = AutoModelForImageClassification.from_pretrained("saved_model_files") | |
labels = dataset['train'].features['labels'].names | |
def classify(im): | |
features = feature_extractor(im, return_tensors='pt') | |
logits = model(features["pixel_values"])[-1] | |
probability = torch.nn.functional.softmax(logits, dim=-1) | |
probs = probability[0].detach().numpy() | |
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} | |
return confidences | |
import gradio as gr | |
Instruction = "Submit bean-leaf images with different leaf conditions" | |
title="Bean-leaf-disease Image classification demo" | |
description = "Drop an Input image to classify, Observe the model prediction across 3 distinct categories." | |
article = """ | |
- Select an image from the examples provided as demo image | |
- Click submit button to make Image classification | |
- Click clear button to try new Image for classification | |
""" | |
interface = gr.Interface( | |
classify, | |
interpretation="default", | |
inputs='image', | |
outputs='label', | |
instructuction = Instruction, | |
title = title, | |
description = description, | |
article = article, | |
examples=["image1.jpg", | |
"image2.jpg", | |
"image3.jpg", | |
"image4.jpg"] | |
) | |
interface.launch(debug=True) | |