Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present | |
URLS = { | |
"hubert-discrete": "https://github.com/bshall/acoustic-model/releases/download/v0.1/hubert-discrete-d49e1c77.pt", | |
"hubert-soft": "https://github.com/bshall/acoustic-model/releases/download/v0.1/hubert-soft-0321fd7e.pt", | |
} | |
class AcousticModel(nn.Module): | |
def __init__(self, discrete: bool = False, upsample: bool = True): | |
super().__init__() | |
self.encoder = Encoder(discrete, upsample) | |
self.decoder = Decoder() | |
def forward(self, x: torch.Tensor, mels: torch.Tensor) -> torch.Tensor: | |
x = self.encoder(x) | |
return self.decoder(x, mels) | |
def generate(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.encoder(x) | |
return self.decoder.generate(x) | |
class Encoder(nn.Module): | |
def __init__(self, discrete: bool = False, upsample: bool = True): | |
super().__init__() | |
self.embedding = nn.Embedding(100 + 1, 256) if discrete else None | |
self.prenet = PreNet(256, 256, 256) | |
self.convs = nn.Sequential( | |
nn.Conv1d(256, 512, 5, 1, 2), | |
nn.ReLU(), | |
nn.InstanceNorm1d(512), | |
nn.ConvTranspose1d(512, 512, 4, 2, 1) if upsample else nn.Identity(), | |
nn.Conv1d(512, 512, 5, 1, 2), | |
nn.ReLU(), | |
nn.InstanceNorm1d(512), | |
nn.Conv1d(512, 512, 5, 1, 2), | |
nn.ReLU(), | |
nn.InstanceNorm1d(512), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if self.embedding is not None: | |
x = self.embedding(x) | |
x = self.prenet(x) | |
x = self.convs(x.transpose(1, 2)) | |
return x.transpose(1, 2) | |
class Decoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.prenet = PreNet(128, 256, 256) | |
self.lstm1 = nn.LSTM(512 + 256, 768, batch_first=True) | |
self.lstm2 = nn.LSTM(768, 768, batch_first=True) | |
self.lstm3 = nn.LSTM(768, 768, batch_first=True) | |
self.proj = nn.Linear(768, 128, bias=False) | |
def forward(self, x: torch.Tensor, mels: torch.Tensor) -> torch.Tensor: | |
mels = self.prenet(mels) | |
x, _ = self.lstm1(torch.cat((x, mels), dim=-1)) | |
res = x | |
x, _ = self.lstm2(x) | |
x = res + x | |
res = x | |
x, _ = self.lstm3(x) | |
x = res + x | |
return self.proj(x) | |
def generate(self, xs: torch.Tensor) -> torch.Tensor: | |
m = torch.zeros(xs.size(0), 128, device=xs.device) | |
h1 = torch.zeros(1, xs.size(0), 768, device=xs.device) | |
c1 = torch.zeros(1, xs.size(0), 768, device=xs.device) | |
h2 = torch.zeros(1, xs.size(0), 768, device=xs.device) | |
c2 = torch.zeros(1, xs.size(0), 768, device=xs.device) | |
h3 = torch.zeros(1, xs.size(0), 768, device=xs.device) | |
c3 = torch.zeros(1, xs.size(0), 768, device=xs.device) | |
mel = [] | |
for x in torch.unbind(xs, dim=1): | |
m = self.prenet(m) | |
x = torch.cat((x, m), dim=1).unsqueeze(1) | |
x1, (h1, c1) = self.lstm1(x, (h1, c1)) | |
x2, (h2, c2) = self.lstm2(x1, (h2, c2)) | |
x = x1 + x2 | |
x3, (h3, c3) = self.lstm3(x, (h3, c3)) | |
x = x + x3 | |
m = self.proj(x).squeeze(1) | |
mel.append(m) | |
return torch.stack(mel, dim=1) | |
class PreNet(nn.Module): | |
def __init__( | |
self, | |
input_size: int, | |
hidden_size: int, | |
output_size: int, | |
dropout: float = 0.5, | |
): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(input_size, hidden_size), | |
nn.ReLU(), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_size, output_size), | |
nn.ReLU(), | |
nn.Dropout(dropout), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.net(x) | |
def _acoustic( | |
name: str, | |
discrete: bool, | |
upsample: bool, | |
pretrained: bool = True, | |
progress: bool = True, | |
) -> AcousticModel: | |
acoustic = AcousticModel(discrete, upsample) | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url(URLS[name], progress=progress) | |
consume_prefix_in_state_dict_if_present(checkpoint["acoustic-model"], "module.") | |
acoustic.load_state_dict(checkpoint["acoustic-model"]) | |
acoustic.eval() | |
return acoustic | |
def hubert_discrete( | |
pretrained: bool = True, | |
progress: bool = True, | |
) -> AcousticModel: | |
r"""HuBERT-Discrete acoustic model from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`. | |
Args: | |
pretrained (bool): load pretrained weights into the model | |
progress (bool): show progress bar when downloading model | |
""" | |
return _acoustic( | |
"hubert-discrete", | |
discrete=True, | |
upsample=True, | |
pretrained=pretrained, | |
progress=progress, | |
) | |
def hubert_soft( | |
pretrained: bool = True, | |
progress: bool = True, | |
) -> AcousticModel: | |
r"""HuBERT-Soft acoustic model from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`. | |
Args: | |
pretrained (bool): load pretrained weights into the model | |
progress (bool): show progress bar when downloading model | |
""" | |
return _acoustic( | |
"hubert-soft", | |
discrete=False, | |
upsample=True, | |
pretrained=pretrained, | |
progress=progress, | |
) | |