Spaces:
Running
Running
ciover2024
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import torchvision
|
6 |
-
import torchvision.transforms as T
|
7 |
from diffusers import StableDiffusionInpaintPipeline
|
8 |
import numpy as np
|
9 |
-
import cv2
|
10 |
import os
|
11 |
import shutil
|
12 |
from gradio_client import Client, handle_file
|
@@ -27,11 +27,11 @@ inpaint_pipeline = load_inpainting_model()
|
|
27 |
|
28 |
# Function to resize image (simpler interpolation method for speed)
|
29 |
def resize_to_match(input_image, output_image):
|
30 |
-
torch_img = pil_to_torch(input_image)
|
31 |
-
torch_img_scaled = F.interpolate(torch_img.unsqueeze(0),mode='trilinear').squeeze(0)
|
32 |
-
output_image = torchvision.transforms.functional.to_pil_image(torch_img_scaled, mode=None)
|
33 |
-
return output_image
|
34 |
-
|
35 |
|
36 |
# Function to generate the mask using Florence SAM Masking API (Replicate)
|
37 |
def generate_mask(image_path, text_prompt="clothing"):
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
#import torch.nn.functional as F
|
5 |
+
#import torchvision
|
6 |
+
#import torchvision.transforms as T
|
7 |
from diffusers import StableDiffusionInpaintPipeline
|
8 |
import numpy as np
|
9 |
+
#import cv2
|
10 |
import os
|
11 |
import shutil
|
12 |
from gradio_client import Client, handle_file
|
|
|
27 |
|
28 |
# Function to resize image (simpler interpolation method for speed)
|
29 |
def resize_to_match(input_image, output_image):
|
30 |
+
#torch_img = pil_to_torch(input_image)
|
31 |
+
#torch_img_scaled = F.interpolate(torch_img.unsqueeze(0),mode='trilinear').squeeze(0)
|
32 |
+
#output_image = torchvision.transforms.functional.to_pil_image(torch_img_scaled, mode=None)
|
33 |
+
#return output_image
|
34 |
+
return output_image.resize(input_image.size, Image.BICUBIC) # Use BILINEAR for faster resizing
|
35 |
|
36 |
# Function to generate the mask using Florence SAM Masking API (Replicate)
|
37 |
def generate_mask(image_path, text_prompt="clothing"):
|