Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from keras.models import Model | |
from keras.layers import Input, Conv2D, MaxPooling2D, Conv2DTranspose, concatenate | |
size = 128 | |
def preprocess_image(image, size=128): | |
image = image.resize((size, size)) | |
image = image.convert("L") | |
image = np.array(image) / 255.0 | |
return image | |
def conv_block(input, num_filters): | |
conv = Conv2D(num_filters, (3, 3), activation="relu", padding="same", kernel_initializer='he_normal')(input) | |
conv = Conv2D(num_filters, (3, 3), activation="relu", padding="same", kernel_initializer='he_normal')(conv) | |
return conv | |
def encoder_block(input, num_filters): | |
conv = conv_block(input, num_filters) | |
pool = MaxPooling2D((2, 2))(conv) | |
return conv, pool | |
def decoder_block(input, skip_features, num_filters): | |
uconv = Conv2DTranspose(num_filters, (2, 2), strides=2, padding="same")(input) | |
con = concatenate([uconv, skip_features]) | |
conv = conv_block(con, num_filters) | |
return conv | |
def build_model(input_shape): | |
input_layer = Input(input_shape) | |
s1, p1 = encoder_block(input_layer, 64) | |
s2, p2 = encoder_block(p1, 128) | |
s3, p3 = encoder_block(p2, 256) | |
s4, p4 = encoder_block(p3, 512) | |
b1 = conv_block(p4, 1024) | |
d1 = decoder_block(b1, s4, 512) | |
d2 = decoder_block(d1, s3, 256) | |
d3 = decoder_block(d2, s2, 128) | |
d4 = decoder_block(d3, s1, 64) | |
output_layer = Conv2D(1, 1, padding="same", activation="sigmoid")(d4) | |
model = Model(input_layer, output_layer, name="U-Net") | |
model.load_weights('modelo.h5') | |
return model | |
def preprocess_image(image, size=128): | |
image = cv2.resize(image, (size, size)) | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
image = image / 255. | |
return image | |
def segment(image): | |
image = preprocess_image(image, size=size) | |
image = np.expand_dims(image, 0) | |
output = model.predict(image, verbose=0) | |
mask_image = output[0] | |
mask_image = np.squeeze(mask_image, -1) | |
mask_image *= 255 | |
mask_image = mask_image.astype(np.uint8) | |
mask_image = Image.fromarray(mask_image).convert("L") | |
#Porcentaje de 0 | |
positive_pixels = np.count_nonzero(mask_image) | |
total_pixels = mask_image.size[0] * mask_image.size[1] | |
percentage = (positive_pixels / total_pixels) * 100 | |
# Calcular los porcentajes de 0 y 1 | |
class_0_percentage = 100 - percentage | |
class_1_percentage = percentage | |
return mask_image, class_0_percentage, class_1_percentage | |
if __name__ == "__main__": | |
model = build_model(input_shape=(size, size, 1)) | |
gr.Interface( | |
fn=segment, | |
inputs="image", | |
outputs=[ | |
gr.Image(type="pil", label="Breast Cancer Mask"), | |
gr.Number(label="Class 0 Percentage"), | |
gr.Number(label="Class 1 Percentage") | |
], | |
examples=[["benign(10).png"], ["benign(109).png"]], | |
title = '<h1 style="text-align: center;">Breast Cancer Ultrasound Image Segmentation!</h1>', | |
description = """ | |
Check out this exciting development in the field of breast cancer diagnosis and treatment! | |
A demo of Breast Cancer Ultrasound Image Segmentation has been developed. | |
Upload image file, or try out one of the examples below! | |
""" | |
).launch(debug=True) |