Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +44 -0
- model10M.pt +3 -0
- model_transformer.py +37 -0
- requirements.txt +3 -0
- tokenizer.json +135 -0
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from model_transformer import TransformerLM
|
| 3 |
+
from tokenizers import Tokenizer
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
# Load tokenizer
|
| 7 |
+
tok = Tokenizer.from_file("tokenizer.json")
|
| 8 |
+
|
| 9 |
+
def encode(text):
|
| 10 |
+
return tok.encode(text).ids
|
| 11 |
+
|
| 12 |
+
def decode(ids):
|
| 13 |
+
return tok.decode(ids)
|
| 14 |
+
|
| 15 |
+
# Load model
|
| 16 |
+
vocab_size = tok.get_vocab_size()
|
| 17 |
+
model = TransformerLM(vocab_size)
|
| 18 |
+
model.load_state_dict(torch.load("model10M.pt", map_location="cpu"))
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
+
# Text generation
|
| 22 |
+
def generate(prompt, max_len=100):
|
| 23 |
+
ids = encode(prompt)
|
| 24 |
+
ids = torch.tensor([ids], dtype=torch.long)
|
| 25 |
+
|
| 26 |
+
for _ in range(max_len):
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
logits = model(ids)
|
| 29 |
+
next_id = torch.argmax(logits[0, -1]).item()
|
| 30 |
+
ids = torch.cat([ids, torch.tensor([[next_id]])], dim=1)
|
| 31 |
+
|
| 32 |
+
output = decode(ids[0].tolist())
|
| 33 |
+
return output
|
| 34 |
+
|
| 35 |
+
# Gradio UI
|
| 36 |
+
demo = gr.Interface(
|
| 37 |
+
fn=generate,
|
| 38 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask something..."),
|
| 39 |
+
outputs="text",
|
| 40 |
+
title="ChudAI (Sandesh Edition)",
|
| 41 |
+
description="Your custom 10M Transformer AI running on HuggingFace."
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
demo.launch()
|
model10M.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbfdce64e308d8c31e1b8705857b2c6d297033557291f1f94b226dcac19c331a
|
| 3 |
+
size 31756223
|
model_transformer.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
class PositionalEncoding(nn.Module):
|
| 5 |
+
def __init__(self, emb, max_len=2048):
|
| 6 |
+
super().__init__()
|
| 7 |
+
pe = torch.zeros(max_len, emb)
|
| 8 |
+
pos = torch.arange(0, max_len).unsqueeze(1)
|
| 9 |
+
div = torch.exp(torch.arange(0, emb, 2) * (-torch.log(torch.tensor(10000.0)) / emb))
|
| 10 |
+
pe[:, 0::2] = torch.sin(pos * div)
|
| 11 |
+
pe[:, 1::2] = torch.cos(pos * div)
|
| 12 |
+
self.pe = pe.unsqueeze(0)
|
| 13 |
+
|
| 14 |
+
def forward(self, x):
|
| 15 |
+
return x + self.pe[:, :x.size(1), :].to(x.device)
|
| 16 |
+
|
| 17 |
+
class TransformerLM(nn.Module):
|
| 18 |
+
def __init__(self, vocab_size, emb=256, n_heads=4, n_layers=4):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.embed = nn.Embedding(vocab_size, emb)
|
| 21 |
+
self.pos = PositionalEncoding(emb)
|
| 22 |
+
|
| 23 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
| 24 |
+
d_model=emb,
|
| 25 |
+
nhead=n_heads,
|
| 26 |
+
dim_feedforward=512,
|
| 27 |
+
batch_first=True
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=n_layers)
|
| 31 |
+
self.head = nn.Linear(emb, vocab_size)
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
x = self.embed(x)
|
| 35 |
+
x = self.pos(x)
|
| 36 |
+
x = self.transformer(x)
|
| 37 |
+
return self.head(x)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
tokenizers
|
| 3 |
+
gradio
|
tokenizer.json
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"version": "1.0",
|
| 3 |
+
"truncation": null,
|
| 4 |
+
"padding": null,
|
| 5 |
+
"added_tokens": [
|
| 6 |
+
{
|
| 7 |
+
"id": 0,
|
| 8 |
+
"content": "[PAD]",
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"lstrip": false,
|
| 11 |
+
"rstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"special": true
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"id": 1,
|
| 17 |
+
"content": "[UNK]",
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"special": true
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": 2,
|
| 26 |
+
"content": "[CLS]",
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"special": true
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"id": 3,
|
| 35 |
+
"content": "[SEP]",
|
| 36 |
+
"single_word": false,
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"rstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"special": true
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"id": 4,
|
| 44 |
+
"content": "[MASK]",
|
| 45 |
+
"single_word": false,
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"special": true
|
| 50 |
+
}
|
| 51 |
+
],
|
| 52 |
+
"normalizer": {
|
| 53 |
+
"type": "Sequence",
|
| 54 |
+
"normalizers": [
|
| 55 |
+
{
|
| 56 |
+
"type": "NFKC"
|
| 57 |
+
}
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
"pre_tokenizer": {
|
| 61 |
+
"type": "Whitespace"
|
| 62 |
+
},
|
| 63 |
+
"post_processor": null,
|
| 64 |
+
"decoder": null,
|
| 65 |
+
"model": {
|
| 66 |
+
"type": "WordLevel",
|
| 67 |
+
"vocab": {
|
| 68 |
+
"[PAD]": 0,
|
| 69 |
+
"[UNK]": 1,
|
| 70 |
+
"[CLS]": 2,
|
| 71 |
+
"[SEP]": 3,
|
| 72 |
+
"[MASK]": 4,
|
| 73 |
+
"I": 5,
|
| 74 |
+
".": 6,
|
| 75 |
+
",": 7,
|
| 76 |
+
"a": 8,
|
| 77 |
+
"am": 9,
|
| 78 |
+
"and": 10,
|
| 79 |
+
"is": 11,
|
| 80 |
+
"not": 12,
|
| 81 |
+
"'": 13,
|
| 82 |
+
"-": 14,
|
| 83 |
+
"...”": 15,
|
| 84 |
+
":": 16,
|
| 85 |
+
"AI": 17,
|
| 86 |
+
"ChatGPT": 18,
|
| 87 |
+
"ChudAI": 19,
|
| 88 |
+
"If": 20,
|
| 89 |
+
"My": 21,
|
| 90 |
+
"Sandesh": 22,
|
| 91 |
+
"Transformer": 23,
|
| 92 |
+
"answer": 24,
|
| 93 |
+
"assistant": 25,
|
| 94 |
+
"avoid": 26,
|
| 95 |
+
"based": 27,
|
| 96 |
+
"but": 28,
|
| 97 |
+
"by": 29,
|
| 98 |
+
"completely": 30,
|
| 99 |
+
"concisely": 31,
|
| 100 |
+
"created": 32,
|
| 101 |
+
"don": 33,
|
| 102 |
+
"here": 34,
|
| 103 |
+
"intelligently": 35,
|
| 104 |
+
"know": 36,
|
| 105 |
+
"like": 37,
|
| 106 |
+
"logically": 38,
|
| 107 |
+
"loops": 39,
|
| 108 |
+
"m": 40,
|
| 109 |
+
"meaningless": 41,
|
| 110 |
+
"name": 42,
|
| 111 |
+
"of": 43,
|
| 112 |
+
"on": 44,
|
| 113 |
+
"pretend": 45,
|
| 114 |
+
"repetitive": 46,
|
| 115 |
+
"respond": 47,
|
| 116 |
+
"say": 48,
|
| 117 |
+
"sentences": 49,
|
| 118 |
+
"simplified": 50,
|
| 119 |
+
"small": 51,
|
| 120 |
+
"sure": 52,
|
| 121 |
+
"t": 53,
|
| 122 |
+
"things": 54,
|
| 123 |
+
"think": 55,
|
| 124 |
+
"to": 56,
|
| 125 |
+
"trained": 57,
|
| 126 |
+
"unsure": 58,
|
| 127 |
+
"version": 59,
|
| 128 |
+
"was": 60,
|
| 129 |
+
"what": 61,
|
| 130 |
+
"’": 62,
|
| 131 |
+
"“": 63
|
| 132 |
+
},
|
| 133 |
+
"unk_token": "[UNK]"
|
| 134 |
+
}
|
| 135 |
+
}
|