RLAnOxPeptide / antioxidant_predictor_5.py
chshan's picture
Upload 2 files
1ed0175 verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
class AntioxidantPredictor(nn.Module):
def __init__(self, input_dim, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1):
super(AntioxidantPredictor, self).__init__()
self.prott5_dim = 1024
self.handcrafted_dim = input_dim - self.prott5_dim
self.seq_len = 16
self.prott5_feature_dim = 64 # 16 * 64 = 1024
encoder_layer = nn.TransformerEncoderLayer(
d_model=self.prott5_feature_dim,
nhead=transformer_heads,
dropout=transformer_dropout,
batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)
fused_dim = self.prott5_feature_dim + self.handcrafted_dim
self.fusion_fc = nn.Sequential(
nn.Linear(fused_dim, 1024),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(0.3)
)
self.classifier = nn.Sequential(
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1)
)
# 温度缩放参数 T
# 初始化为1.0,表示在校准前不改变logits
# requires_grad=False,因为T通常在模型训练完成后单独优化
self.temperature = nn.Parameter(torch.ones(1), requires_grad=False)
def forward(self, x, *args):
batch_size = x.size(0)
prot_t5_features = x[:, :self.prott5_dim]
handcrafted_features = x[:, self.prott5_dim:]
prot_t5_seq = prot_t5_features.view(batch_size, self.seq_len, self.prott5_feature_dim)
encoded_seq = self.transformer_encoder(prot_t5_seq)
refined_prott5 = encoded_seq.mean(dim=1)
fused_features = torch.cat([refined_prott5, handcrafted_features], dim=1)
fused_features = self.fusion_fc(fused_features)
logits = self.classifier(fused_features)
# 应用温度缩放: logits / T
# 注意:这里是在获取原始logits后,外部应用sigmoid前进行缩放
# 如果要直接输出校准后的概率,可以在这里除以T然后sigmoid
# 但通常T的优化和应用是分离的。
# 为了在调用模型时就能获得校准的logits(如果T已优化),我们在这里应用它。
# 如果T未被优化(仍为1),则此操作无影响。
logits_scaled = logits / self.temperature
return logits_scaled # 返回校准后(或原始,如果T=1)的logits
def set_temperature(self, temp_value, device):
"""用于设置优化后的温度值"""
self.temperature = nn.Parameter(torch.tensor([temp_value], device=device), requires_grad=False)
print(f"模型温度 T 设置为: {self.temperature.item()}")
def get_temperature(self):
"""获取当前温度值"""
return self.temperature.item()
if __name__ == "__main__":
dummy_input = torch.randn(8, 1914)
model = AntioxidantPredictor(input_dim=1914)
print(f"初始温度: {model.get_temperature()}")
logits_output_initial = model(dummy_input)
print("初始 logits shape:", logits_output_initial.shape)
probs_initial = torch.sigmoid(logits_output_initial)
print("初始概率 (T=1.0):", probs_initial.detach().cpu().numpy()[:2])
# 模拟设置一个优化后的温度
model.set_temperature(1.5, device='cpu') # 假设优化得到 T=1.5
print(f"设置后温度: {model.get_temperature()}")
logits_output_scaled = model(dummy_input) # 模型内部应用了 T
print("缩放后 logits shape:", logits_output_scaled.shape)
probs_scaled = torch.sigmoid(logits_output_scaled) # 外部仍然需要 sigmoid
print("缩放后概率 (T=1.5):", probs_scaled.detach().cpu().numpy()[:2])
# 验证 logits / T 的效果
# logits_manual_scale = logits_output_initial / 1.5
# probs_manual_scale = torch.sigmoid(logits_manual_scale)
# print("手动缩放后概率 (T=1.5):", probs_manual_scale.detach().cpu().numpy()[:2])
# assert torch.allclose(probs_scaled, probs_manual_scale) # 应该相等