LightGBM-parameter-tuning / definitions.py
chrisli's picture
Create definitions.py
17e4815
raw
history blame
823 Bytes
import pandas as pd
import streamlit as st
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import roc_auc_score,roc_curve,auc,accuracy_score,classification_report,confusion_matrix,precision_recall_curve
import lightgbm as lgb
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
def plot_roc(fpr, tpr, label=None):
roc_auc = auc(fpr, tpr)
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
st.pyplot()
© 2022 GitHub, Inc.
Terms