Spaces:
Runtime error
Runtime error
import requests | |
import pandas as pd | |
from tqdm.auto import tqdm | |
from utils import * | |
import gradio as gr | |
from huggingface_hub import HfApi, hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
class DeepRL_Leaderboard: | |
def __init__(self) -> None: | |
self.leaderboard= {} | |
def add_leaderboard(self,id=None, title=None): | |
if id is not None and title is not None: | |
id = id.strip() | |
title = title.strip() | |
self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}}) | |
def get_data(self): | |
return self.leaderboard | |
def get_ids(self): | |
return list(self.leaderboard.keys()) | |
# CSS file for the | |
with open('app.css','r') as f: | |
BLOCK_CSS = f.read() | |
LOADED_MODEL_IDS = {} | |
def get_data(rl_env): | |
global LOADED_MODEL_IDS | |
data = [] | |
model_ids = get_model_ids(rl_env) | |
LOADED_MODEL_IDS[rl_env]=model_ids | |
for model_id in tqdm(model_ids): | |
meta = get_metadata(model_id) | |
if meta is None: | |
continue | |
row={} | |
row["metadata"] = meta | |
data.append(row) | |
return pd.DataFrame.from_records(data) | |
def get_data_per_env(rl_env): | |
dataframe = get_data(rl_env) | |
return dataframe,dataframe.empty | |
rl_leaderboard = DeepRL_Leaderboard() | |
rl_leaderboard.add_leaderboard('CarRacing-v0'," The Car Racing ποΈ Leaderboard π") | |
rl_leaderboard.add_leaderboard('MountainCar-v0',"The Mountain Car β°οΈ π Leaderboard π") | |
rl_leaderboard.add_leaderboard('LunarLander-v2',"The Lunar Lander π Leaderboard π") | |
rl_leaderboard.add_leaderboard('BipedalWalker-v3',"The BipedalWalker Leaderboard π") | |
rl_leaderboard.add_leaderboard('Taxi-v3','The Taxi-v3π Leaderboard π') | |
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard π') | |
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard π') | |
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard π') | |
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard π') | |
rl_leaderboard.add_leaderboard('SpaceInvadersNoFrameskip-v4','The SpaceInvadersNoFrameskip-v4 Leaderboard π') | |
RL_ENVS = rl_leaderboard.get_ids() | |
RL_DETAILS = rl_leaderboard.get_data() | |
def update_data(rl_env): | |
global LOADED_MODEL_IDS | |
data = [] | |
model_ids = [x for x in get_model_ids(rl_env) if x not in LOADED_MODEL_IDS[rl_env]] | |
LOADED_MODEL_IDS[rl_env]+=model_ids | |
for model_id in tqdm(model_ids): | |
meta = get_metadata(model_id) | |
if meta is None: | |
continue | |
row = {} | |
row["metadata"] = meta | |
data.append(row) | |
return pd.DataFrame.from_records(data) | |
def update_data_per_env(rl_env): | |
global RL_DETAILS | |
old_dataframe,_ = RL_DETAILS[rl_env]['data'] | |
new_dataframe = update_data(rl_env) | |
new_dataframe = new_dataframe.fillna("") | |
dataframe = pd.concat([old_dataframe,new_dataframe]) | |
return dataframe,dataframe.empty | |
def get_info_display(dataframe,env_name,name_leaderboard,is_empty): | |
if not is_empty: | |
markdown = """ | |
<div class='infoPoint'> | |
<h1> {name_leaderboard} </h1> | |
<br> | |
<p> This is a leaderboard of <b>{len_dataframe}</b> agents, from <b>{num_unique_users}</b> unique users, playing {env_name} π©βπ. </p> | |
<br> | |
<p> We use lower bound result to sort the models: mean_reward - std_reward. </p> | |
<br> | |
<p> You can click on the model's name to be redirected to its model card which includes documentation. </p> | |
<br> | |
<p> You want to try your model? Read this <a href="https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md" target="_blank">Unit 1</a> of Deep Reinforcement Learning Class. | |
</p> | |
</div> | |
""".format(len_dataframe = len(dataframe),env_name = env_name,name_leaderboard = name_leaderboard,num_unique_users = len(set(dataframe['User'].values))) | |
else: | |
markdown = """ | |
<div class='infoPoint'> | |
<h1> {name_leaderboard} </h1> | |
<br> | |
</div> | |
""".format(name_leaderboard = name_leaderboard) | |
return markdown | |
def reload_all_data(): | |
global RL_DETAILS,RL_ENVS | |
for rl_env in RL_ENVS: | |
RL_DETAILS[rl_env]['data'] = update_data_per_env(rl_env) | |
html = """<div style="color: green"> | |
<p> β Leaderboard updated! Click `Show Statistics` to see the current statistics.</p> | |
</div> | |
""" | |
return html | |
def reload_leaderboard(rl_env): | |
global RL_DETAILS | |
data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] | |
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty) | |
return markdown | |
def get_units_stat(): | |
# gets the number of models per unit | |
units={'Unit 1':[],'Unit 2':[],'Unit 3':[]} | |
for rl_env in RL_ENVS: | |
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data'] | |
if is_empty is False: | |
# All good! Carry on | |
metadata_list = rl_env_metadata['metadata'].values | |
units['Unit 1'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags']]) | |
units['Unit 2'].extend([m for m in metadata_list if 'custom-implementation' in m['tags']]) | |
units['Unit 3'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags'] and 'SpaceInvadersNoFrameskip-v4'.lower() in [tag.lower for tag in m['tags']]]) | |
# get count | |
for k in units.keys(): | |
units[k] = len(units[k]) | |
return plot_bar(value = list(units.values),name = list(units.keys()),x_name = "Units",y_name = "Number of model submissions",title="Number of model submissions per unit") | |
def get_models_stat(): | |
# gets the number of models per unit | |
units={} | |
for rl_env in RL_ENVS: | |
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data'] | |
if is_empty is False: | |
# All good! Carry on | |
metadata_list = rl_env_metadata['metadata'].values | |
units[rl_env] = [m for m in metadata_list] | |
# get count | |
for k in units.keys(): | |
units[k] = len(units[k]) | |
return plot_bar(value = list(units.values),name = list(units.keys()),x_name = "RL Environment",y_name = "Number of model submissions",title="Number of model submissions per RL environment") | |
def get_user_stat(): | |
# gets the number of models per unit | |
users={} | |
for rl_env in RL_ENVS: | |
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data'] | |
if is_empty is False: | |
# All good! Carry on | |
metadata_list = rl_env_metadata['metadata'].values | |
users[rl_env] = [m['model_id'].split('/')[0] for m in metadata_list] | |
# get count | |
for k in users.keys(): | |
users[k] = len(set(users[k])) | |
return plot_bar(value = list(users.values),name = list(users.keys()),x_name = "RL Environment",y_name = "Number of user submissions",title="Number of user submissions per RL environment") | |
def get_stat(): | |
# gets the number of models per unit | |
units={'Unit 1':[],'Unit 2':[],'Unit 3':[]} | |
users={} | |
models={} | |
for rl_env in RL_ENVS: | |
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data'] | |
if is_empty is False: | |
# All good! Carry on | |
metadata_list = rl_env_metadata['metadata'].values | |
units['Unit 1'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags']]) | |
units['Unit 2'].extend([m for m in metadata_list if 'custom-implementation' in m['tags']]) | |
units['Unit 3'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags'] and 'spaceinvadersNoFrameskip-v4'.lower() in [tag.lower() for tag in m['tags']]]) | |
users[rl_env] = [m['model_id'].split('/')[0] for m in metadata_list] | |
models[rl_env] = [m for m in metadata_list] | |
# get count | |
for k in units.keys(): | |
units[k] = len(units[k]) | |
for k in users.keys(): | |
users[k] = len(set(users[k])) | |
for k in models.keys(): | |
models[k] = len(models[k]) | |
units_plot = plot_bar(value = list(units.values()),name = list(units.keys()),x_name = "Units",y_name = "Number of model submissions",title="Number of model submissions per unit") | |
user_plot = plot_barh(value = list(users.values()),name = list(users.keys()),x_name = "RL Environment",y_name = "Number of unique user submissions",title="Number of unique user submissions per RL environment") | |
model_plot = plot_barh(value = list(models.values()),name = list(models.keys()),x_name = "RL Environment",y_name = "Number of model submissions",title="Number of model submissions per RL environment") | |
return units_plot,user_plot,model_plot | |
block = gr.Blocks(css=BLOCK_CSS) | |
with block: | |
notification = gr.HTML("""<div style="color: green"> | |
<p> β Updating leaderboard... </p> | |
</div> | |
""") | |
block.load(reload_all_data,[],[notification]) | |
with gr.Tabs(): | |
with gr.TabItem("Dashboard") as rl_tab: | |
# Stats of user submission per units | |
# 2. # model submissions per environment | |
# 3. # unique users per environment | |
# get_units_stat() | |
#data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] | |
#markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty) | |
#env_state =gr.Variable(default_value=rl_env) | |
#output_markdown = gr.HTML(markdown) | |
reload = gr.Button('Show Statistics') | |
units_plot = gr.Plot(type="matplotlib") | |
model_plot = gr.Plot(type="matplotlib") | |
user_plot = gr.Plot(type="matplotlib") | |
#plot_gender = gr.Plot(type="matplotlib") | |
#output_html = gr.HTML(data_html) | |
reload.click(get_stat,[],[units_plot,user_plot,model_plot]) | |
#rl_tab.select(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html]) | |
block.launch() | |