Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Load the model and processor
|
| 6 |
repo_name = "cyan2k/molmo-7B-O-bnb-4bit"
|
| 7 |
-
arguments = {
|
| 8 |
-
"device_map": "auto",
|
| 9 |
-
"torch_dtype": "auto",
|
| 10 |
-
"trust_remote_code": True,
|
| 11 |
-
"load_in_8bit": True # Use 8-bit for reduced memory footprint
|
| 12 |
-
}
|
| 13 |
|
| 14 |
# Load the processor and model
|
| 15 |
processor = AutoProcessor.from_pretrained(repo_name, **arguments)
|
|
@@ -19,12 +16,12 @@ def describe_image(image):
|
|
| 19 |
# Process the uploaded image
|
| 20 |
inputs = processor.process(
|
| 21 |
images=[image],
|
| 22 |
-
text="Describe this image
|
| 23 |
)
|
| 24 |
|
| 25 |
# Move inputs to model device
|
| 26 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 27 |
-
|
| 28 |
# Generate output
|
| 29 |
output = model.generate_from_batch(
|
| 30 |
inputs,
|
|
@@ -57,4 +54,4 @@ def gradio_app():
|
|
| 57 |
interface.launch()
|
| 58 |
|
| 59 |
# Launch the Gradio app
|
| 60 |
-
gradio_app()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
| 3 |
from PIL import Image
|
| 4 |
+
import requests
|
| 5 |
+
from io import BytesIO
|
| 6 |
|
| 7 |
# Load the model and processor
|
| 8 |
repo_name = "cyan2k/molmo-7B-O-bnb-4bit"
|
| 9 |
+
arguments = {"device_map": "auto", "torch_dtype": "auto", "trust_remote_code": True}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load the processor and model
|
| 12 |
processor = AutoProcessor.from_pretrained(repo_name, **arguments)
|
|
|
|
| 16 |
# Process the uploaded image
|
| 17 |
inputs = processor.process(
|
| 18 |
images=[image],
|
| 19 |
+
text="Describe this image."
|
| 20 |
)
|
| 21 |
|
| 22 |
# Move inputs to model device
|
| 23 |
+
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
| 24 |
+
|
| 25 |
# Generate output
|
| 26 |
output = model.generate_from_batch(
|
| 27 |
inputs,
|
|
|
|
| 54 |
interface.launch()
|
| 55 |
|
| 56 |
# Launch the Gradio app
|
| 57 |
+
gradio_app()
|