Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -2,39 +2,34 @@
|
|
| 2 |
"""
|
| 3 |
HF Space - main.py de substitution pour tests Qdrant / indexation minimale
|
| 4 |
|
| 5 |
-
|
| 6 |
-
- POST /wipe?project_id=XXX
|
| 7 |
-
- POST /index
|
| 8 |
-
- GET /status/{job_id}
|
| 9 |
-
- GET /collections/{
|
| 10 |
-
- POST /query
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
ENV attendues :
|
| 15 |
-
- QDRANT_URL :
|
| 16 |
-
- QDRANT_API_KEY : clé Qdrant
|
| 17 |
-
- COLLECTION_PREFIX :
|
| 18 |
- EMB_PROVIDER : "hf" (défaut) ou "dummy"
|
| 19 |
-
- HF_EMBED_MODEL :
|
| 20 |
-
- HUGGINGFACEHUB_API_TOKEN
|
| 21 |
-
- LOG_LEVEL : DEBUG (défaut)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
uvicorn>=0.30
|
| 26 |
-
httpx>=0.27
|
| 27 |
-
pydantic>=2.7
|
| 28 |
-
gradio>=4.43
|
| 29 |
-
numpy>=2.0
|
| 30 |
"""
|
| 31 |
|
| 32 |
from __future__ import annotations
|
| 33 |
import os
|
| 34 |
import time
|
| 35 |
import uuid
|
| 36 |
-
import math
|
| 37 |
-
import json
|
| 38 |
import hashlib
|
| 39 |
import logging
|
| 40 |
import asyncio
|
|
@@ -42,10 +37,10 @@ from typing import List, Dict, Any, Optional, Tuple
|
|
| 42 |
|
| 43 |
import numpy as np
|
| 44 |
import httpx
|
|
|
|
| 45 |
from pydantic import BaseModel, Field, ValidationError
|
| 46 |
from fastapi import FastAPI, HTTPException, Query
|
| 47 |
from fastapi.middleware.cors import CORSMiddleware
|
| 48 |
-
|
| 49 |
import gradio as gr
|
| 50 |
|
| 51 |
# ------------------------------------------------------------------------------
|
|
@@ -67,10 +62,10 @@ HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3")
|
|
| 67 |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
| 68 |
|
| 69 |
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 70 |
-
LOG.warning("QDRANT_URL / QDRANT_API_KEY non fournis : l'upsert échouera.
|
| 71 |
|
| 72 |
if EMB_PROVIDER == "hf" and not HF_TOKEN:
|
| 73 |
-
LOG.warning("EMB_PROVIDER=hf
|
| 74 |
|
| 75 |
# ------------------------------------------------------------------------------
|
| 76 |
# Schémas Pydantic
|
|
@@ -130,21 +125,15 @@ def l2_normalize(vec: List[float]) -> List[float]:
|
|
| 130 |
return arr.astype(np.float32).tolist()
|
| 131 |
|
| 132 |
def flatten_any(x: Any) -> List[float]:
|
| 133 |
-
"""
|
| 134 |
-
Certaines APIs renvoient [[...]] ou [[[...]]]; on aplanit en 1D.
|
| 135 |
-
"""
|
| 136 |
if isinstance(x, (list, tuple)):
|
| 137 |
if len(x) > 0 and isinstance(x[0], (list, tuple)):
|
| 138 |
-
# Aplanit récursif
|
| 139 |
return flatten_any(x[0])
|
| 140 |
return list(map(float, x))
|
| 141 |
raise ValueError("Embedding vector mal formé")
|
| 142 |
|
| 143 |
def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int, str]]:
|
| 144 |
-
"""
|
| 145 |
-
Retourne une liste de (start, end, chunk_text)
|
| 146 |
-
Ignore les petits fragments (< 30 chars) pour éviter le bruit.
|
| 147 |
-
"""
|
| 148 |
text = text or ""
|
| 149 |
if not text.strip():
|
| 150 |
return []
|
|
@@ -162,34 +151,26 @@ def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int,
|
|
| 162 |
return res
|
| 163 |
|
| 164 |
async def ensure_collection(client: httpx.AsyncClient, coll: str, vector_size: int) -> None:
|
| 165 |
-
"""
|
| 166 |
-
Crée ou ajuste la collection Qdrant (distance = Cosine).
|
| 167 |
-
"""
|
| 168 |
url = f"{QDRANT_URL}/collections/{coll}"
|
| 169 |
-
# Vérifie l'existence
|
| 170 |
r = await client.get(url, headers={"api-key": QDRANT_API_KEY}, timeout=20)
|
|
|
|
| 171 |
if r.status_code == 200:
|
| 172 |
-
# Optionnel: vérifier la taille du vecteur ; si mismatch, on peut supprimer/recréer
|
| 173 |
data = r.json()
|
| 174 |
existing_size = data.get("result", {}).get("vectors", {}).get("size")
|
| 175 |
if existing_size and int(existing_size) != int(vector_size):
|
| 176 |
LOG.warning(f"Collection {coll} dim={existing_size} ≠ attendu {vector_size} → recréation")
|
| 177 |
await client.delete(url, headers={"api-key": QDRANT_API_KEY}, timeout=20)
|
|
|
|
| 178 |
else:
|
| 179 |
-
LOG.debug(f"Collection {coll}
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
async def qdrant_upsert(
|
| 189 |
-
client: httpx.AsyncClient,
|
| 190 |
-
coll: str,
|
| 191 |
-
points: List[Dict[str, Any]],
|
| 192 |
-
) -> int:
|
| 193 |
if not points:
|
| 194 |
return 0
|
| 195 |
url = f"{QDRANT_URL}/collections/{coll}/points?wait=true"
|
|
@@ -201,22 +182,12 @@ async def qdrant_upsert(
|
|
| 201 |
|
| 202 |
async def qdrant_count(client: httpx.AsyncClient, coll: str) -> int:
|
| 203 |
url = f"{QDRANT_URL}/collections/{coll}/points/count"
|
| 204 |
-
r = await client.post(
|
| 205 |
-
url,
|
| 206 |
-
headers={"api-key": QDRANT_API_KEY},
|
| 207 |
-
json={"exact": True},
|
| 208 |
-
timeout=20,
|
| 209 |
-
)
|
| 210 |
if r.status_code != 200:
|
| 211 |
raise HTTPException(status_code=500, detail=f"Qdrant count échoué: {r.text}")
|
| 212 |
return int(r.json().get("result", {}).get("count", 0))
|
| 213 |
|
| 214 |
-
async def qdrant_search(
|
| 215 |
-
client: httpx.AsyncClient,
|
| 216 |
-
coll: str,
|
| 217 |
-
vector: List[float],
|
| 218 |
-
limit: int = 5,
|
| 219 |
-
) -> Dict[str, Any]:
|
| 220 |
url = f"{QDRANT_URL}/collections/{coll}/points/search"
|
| 221 |
r = await client.post(
|
| 222 |
url,
|
|
@@ -231,27 +202,16 @@ async def qdrant_search(
|
|
| 231 |
# ------------------------------------------------------------------------------
|
| 232 |
# Embeddings (HF Inference ou dummy)
|
| 233 |
# ------------------------------------------------------------------------------
|
| 234 |
-
async def embed_hf(
|
| 235 |
-
client: httpx.AsyncClient,
|
| 236 |
-
texts: List[str],
|
| 237 |
-
model: str = HF_EMBED_MODEL,
|
| 238 |
-
token: str = HF_TOKEN,
|
| 239 |
-
) -> List[List[float]]:
|
| 240 |
-
"""
|
| 241 |
-
Appel HuggingFace Inference (feature extraction) - batch.
|
| 242 |
-
Normalise L2 les vecteurs.
|
| 243 |
-
"""
|
| 244 |
if not token:
|
| 245 |
raise HTTPException(status_code=400, detail="HUGGINGFACEHUB_API_TOKEN manquant pour EMB_PROVIDER=hf")
|
| 246 |
url = f"https://api-inference.huggingface.co/models/{model}"
|
| 247 |
headers = {"Authorization": f"Bearer {token}"}
|
| 248 |
-
# HF accepte une liste de textes directement
|
| 249 |
payload = {"inputs": texts, "options": {"wait_for_model": True}}
|
| 250 |
r = await client.post(url, headers=headers, json=payload, timeout=120)
|
| 251 |
if r.status_code != 200:
|
| 252 |
raise HTTPException(status_code=502, detail=f"HF Inference error: {r.text}")
|
| 253 |
data = r.json()
|
| 254 |
-
# data peut être une liste de listes (ou de listes de listes...)
|
| 255 |
embeddings: List[List[float]] = []
|
| 256 |
if isinstance(data, list):
|
| 257 |
for row in data:
|
|
@@ -263,16 +223,10 @@ async def embed_hf(
|
|
| 263 |
return embeddings
|
| 264 |
|
| 265 |
def embed_dummy(texts: List[str], dim: int = 128) -> List[List[float]]:
|
| 266 |
-
"""
|
| 267 |
-
Embedding déterministe basé sur un hash -> vecteur pseudo-aléatoire stable.
|
| 268 |
-
Suffisant pour tester le pipeline Qdrant (dimensions cohérentes, upsert, count, search).
|
| 269 |
-
"""
|
| 270 |
out: List[List[float]] = []
|
| 271 |
for t in texts:
|
| 272 |
h = hashlib.sha256(t.encode("utf-8")).digest()
|
| 273 |
-
# Étale sur dim floats
|
| 274 |
arr = np.frombuffer((h * ((dim // len(h)) + 1))[:dim], dtype=np.uint8).astype(np.float32)
|
| 275 |
-
# Centrage et normalisation
|
| 276 |
arr = (arr - 127.5) / 127.5
|
| 277 |
arr = arr / (np.linalg.norm(arr) + 1e-9)
|
| 278 |
out.append(arr.astype(np.float32).tolist())
|
|
@@ -291,11 +245,11 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 291 |
job.total_files = len(req.files)
|
| 292 |
job.log(f"Index start project={req.project_id} files={len(req.files)} chunk_size={req.chunk_size} overlap={req.overlap} batch_size={req.batch_size} store_text={req.store_text}")
|
| 293 |
|
| 294 |
-
# Dédup global par hash du texte
|
| 295 |
file_hashes = [hash8(f.text) for f in req.files]
|
| 296 |
uniq = len(set(file_hashes))
|
| 297 |
if uniq != len(file_hashes):
|
| 298 |
-
job.log(f"Attention: {len(file_hashes)-uniq}
|
| 299 |
|
| 300 |
# Chunking
|
| 301 |
records: List[Dict[str, Any]] = []
|
|
@@ -304,12 +258,7 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 304 |
if not chunks:
|
| 305 |
job.log(f"{f.path}: 0 chunk (trop court ou vide)")
|
| 306 |
for idx, (start, end, ch) in enumerate(chunks):
|
| 307 |
-
payload = {
|
| 308 |
-
"path": f.path,
|
| 309 |
-
"chunk": idx,
|
| 310 |
-
"start": start,
|
| 311 |
-
"end": end,
|
| 312 |
-
}
|
| 313 |
if req.store_text:
|
| 314 |
payload["text"] = ch
|
| 315 |
records.append({"payload": payload, "raw": ch})
|
|
@@ -322,33 +271,29 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 322 |
job.finished_at = time.time()
|
| 323 |
return
|
| 324 |
|
| 325 |
-
# Embedding + Upsert (en batches)
|
| 326 |
async with httpx.AsyncClient(timeout=120) as client:
|
| 327 |
-
#
|
| 328 |
warmup_vec = (await embed_texts(client, [records[0]["raw"]]))[0]
|
| 329 |
vec_dim = len(warmup_vec)
|
| 330 |
job.log(f"Warmup embeddings dim={vec_dim} provider={EMB_PROVIDER}")
|
| 331 |
|
| 332 |
-
# Qdrant
|
| 333 |
coll = f"{COLLECTION_PREFIX}{req.project_id}"
|
| 334 |
await ensure_collection(client, coll, vector_size=vec_dim)
|
| 335 |
|
| 336 |
job.stage = "upserting"
|
| 337 |
-
batch_vectors: List[List[float]] = []
|
| 338 |
batch_points: List[Dict[str, Any]] = []
|
| 339 |
|
| 340 |
async def flush_batch():
|
| 341 |
-
nonlocal
|
| 342 |
if not batch_points:
|
| 343 |
return 0
|
| 344 |
added = await qdrant_upsert(client, coll, batch_points)
|
| 345 |
job.upserted += added
|
| 346 |
job.log(f"+{added} points upsert (total={job.upserted})")
|
| 347 |
-
batch_vectors = []
|
| 348 |
batch_points = []
|
| 349 |
return added
|
| 350 |
|
| 351 |
-
# Traite par lot d'embeddings (embedding_batch_size indépendant de l'upsert batch_size)
|
| 352 |
EMB_BATCH = max(8, min(64, req.batch_size * 2))
|
| 353 |
i = 0
|
| 354 |
while i < len(records):
|
|
@@ -360,18 +305,12 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 360 |
job.embedded += len(vecs)
|
| 361 |
|
| 362 |
for r, v in zip(sub, vecs):
|
| 363 |
-
|
| 364 |
-
point = {
|
| 365 |
-
"id": str(uuid.uuid4()),
|
| 366 |
-
"vector": v,
|
| 367 |
-
"payload": payload,
|
| 368 |
-
}
|
| 369 |
batch_points.append(point)
|
| 370 |
if len(batch_points) >= req.batch_size:
|
| 371 |
await flush_batch()
|
| 372 |
i += EMB_BATCH
|
| 373 |
|
| 374 |
-
# Flush final
|
| 375 |
await flush_batch()
|
| 376 |
|
| 377 |
job.stage = "done"
|
|
@@ -389,6 +328,10 @@ fastapi_app.add_middleware(
|
|
| 389 |
allow_headers=["*"],
|
| 390 |
)
|
| 391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
@fastapi_app.get("/")
|
| 393 |
async def root():
|
| 394 |
return {"ok": True, "service": "remote-indexer-min", "qdrant": bool(QDRANT_URL), "emb_provider": EMB_PROVIDER}
|
|
@@ -411,7 +354,6 @@ async def index(req: IndexRequest):
|
|
| 411 |
job_id = uuid.uuid4().hex[:12]
|
| 412 |
job = JobState(job_id=job_id, project_id=req.project_id)
|
| 413 |
JOBS[job_id] = job
|
| 414 |
-
# Lance en tâche de fond
|
| 415 |
asyncio.create_task(run_index_job(job, req))
|
| 416 |
job.log(f"Job {job_id} créé pour project {req.project_id}")
|
| 417 |
return {"job_id": job_id, "project_id": req.project_id}
|
|
@@ -443,15 +385,12 @@ async def query(req: QueryRequest):
|
|
| 443 |
return data
|
| 444 |
|
| 445 |
# ------------------------------------------------------------------------------
|
| 446 |
-
# Gradio UI
|
| 447 |
# ------------------------------------------------------------------------------
|
| 448 |
def _default_two_docs() -> List[Dict[str, str]]:
|
| 449 |
a = "Alpha bravo charlie delta echo foxtrot golf hotel india. " * 3
|
| 450 |
-
b = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy." * 3
|
| 451 |
-
return [
|
| 452 |
-
{"path": "a.txt", "text": a},
|
| 453 |
-
{"path": "b.txt", "text": b},
|
| 454 |
-
]
|
| 455 |
|
| 456 |
async def ui_wipe(project: str):
|
| 457 |
try:
|
|
@@ -486,9 +425,8 @@ async def ui_status(job_id: str):
|
|
| 486 |
return "⚠️ Renseigne un job_id"
|
| 487 |
try:
|
| 488 |
st = await status(job_id)
|
| 489 |
-
# Formatage
|
| 490 |
lines = [f"Job {st['job_id']} — stage={st['stage']} files={st['total_files']} chunks={st['total_chunks']} embedded={st['embedded']} upserted={st['upserted']}"]
|
| 491 |
-
lines += st.get("messages", [])[-50:]
|
| 492 |
if st.get("errors"):
|
| 493 |
lines.append("Erreurs:")
|
| 494 |
lines += [f" - {e}" for e in st["errors"]]
|
|
@@ -528,7 +466,7 @@ with gr.Blocks(title="Remote Indexer - Minimal Test", analytics_enabled=False) a
|
|
| 528 |
"Wipe → Index 2 docs → Status → Count → Query\n"
|
| 529 |
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`)\n"
|
| 530 |
f"- **Qdrant**: `{'OK' if QDRANT_URL else 'ABSENT'}`\n"
|
| 531 |
-
"
|
| 532 |
with gr.Row():
|
| 533 |
project_tb = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 534 |
jobid_tb = gr.Textbox(label="Job ID (pour Status)", value="", interactive=True)
|
|
@@ -550,9 +488,14 @@ with gr.Blocks(title="Remote Indexer - Minimal Test", analytics_enabled=False) a
|
|
| 550 |
|
| 551 |
wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log])
|
| 552 |
index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log])
|
| 553 |
-
# Petit auto-poll status: on relance ui_status à la main en collant le job_id
|
| 554 |
count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log])
|
| 555 |
query_btn.click(ui_query, inputs=[project_tb, query_tb, topk], outputs=[query_out])
|
| 556 |
|
| 557 |
# Monte l'UI Gradio sur la FastAPI
|
| 558 |
app = gr.mount_gradio_app(fastapi_app, ui, path="/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"""
|
| 3 |
HF Space - main.py de substitution pour tests Qdrant / indexation minimale
|
| 4 |
|
| 5 |
+
Endpoints:
|
| 6 |
+
- POST /wipe?project_id=XXX
|
| 7 |
+
- POST /index
|
| 8 |
+
- GET /status/{job_id}
|
| 9 |
+
- GET /collections/{project_id}/count
|
| 10 |
+
- POST /query
|
| 11 |
+
- GET /health <-- healthcheck OK
|
| 12 |
|
| 13 |
+
UI Gradio montée sur "/" pour tests sans console.
|
| 14 |
|
| 15 |
ENV attendues :
|
| 16 |
+
- QDRANT_URL : https://...qdrant.io:6333
|
| 17 |
+
- QDRANT_API_KEY : clé Qdrant
|
| 18 |
+
- COLLECTION_PREFIX : "proj_" par défaut
|
| 19 |
- EMB_PROVIDER : "hf" (défaut) ou "dummy"
|
| 20 |
+
- HF_EMBED_MODEL : "BAAI/bge-m3" par défaut
|
| 21 |
+
- HUGGINGFACEHUB_API_TOKEN (si EMB_PROVIDER=hf)
|
| 22 |
+
- LOG_LEVEL : DEBUG (défaut)
|
| 23 |
+
- PORT : 7860 (fourni par HF)
|
| 24 |
+
|
| 25 |
+
Dépendances suggérées :
|
| 26 |
+
fastapi>=0.111, uvicorn>=0.30, httpx>=0.27, pydantic>=2.7, gradio>=4.43, numpy>=2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
|
| 29 |
from __future__ import annotations
|
| 30 |
import os
|
| 31 |
import time
|
| 32 |
import uuid
|
|
|
|
|
|
|
| 33 |
import hashlib
|
| 34 |
import logging
|
| 35 |
import asyncio
|
|
|
|
| 37 |
|
| 38 |
import numpy as np
|
| 39 |
import httpx
|
| 40 |
+
import uvicorn
|
| 41 |
from pydantic import BaseModel, Field, ValidationError
|
| 42 |
from fastapi import FastAPI, HTTPException, Query
|
| 43 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
| 44 |
import gradio as gr
|
| 45 |
|
| 46 |
# ------------------------------------------------------------------------------
|
|
|
|
| 62 |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
| 63 |
|
| 64 |
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 65 |
+
LOG.warning("QDRANT_URL / QDRANT_API_KEY non fournis : l'upsert échouera.")
|
| 66 |
|
| 67 |
if EMB_PROVIDER == "hf" and not HF_TOKEN:
|
| 68 |
+
LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN. Utilise EMB_PROVIDER=dummy pour tester sans token.")
|
| 69 |
|
| 70 |
# ------------------------------------------------------------------------------
|
| 71 |
# Schémas Pydantic
|
|
|
|
| 125 |
return arr.astype(np.float32).tolist()
|
| 126 |
|
| 127 |
def flatten_any(x: Any) -> List[float]:
|
| 128 |
+
"""Aplatis potentiels [[...]] ou [[[...]]] en 1D."""
|
|
|
|
|
|
|
| 129 |
if isinstance(x, (list, tuple)):
|
| 130 |
if len(x) > 0 and isinstance(x[0], (list, tuple)):
|
|
|
|
| 131 |
return flatten_any(x[0])
|
| 132 |
return list(map(float, x))
|
| 133 |
raise ValueError("Embedding vector mal formé")
|
| 134 |
|
| 135 |
def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int, str]]:
|
| 136 |
+
"""Retourne [(start, end, chunk)] et ignore les fragments < 30 chars."""
|
|
|
|
|
|
|
|
|
|
| 137 |
text = text or ""
|
| 138 |
if not text.strip():
|
| 139 |
return []
|
|
|
|
| 151 |
return res
|
| 152 |
|
| 153 |
async def ensure_collection(client: httpx.AsyncClient, coll: str, vector_size: int) -> None:
|
| 154 |
+
"""Crée la collection Qdrant (distance=Cosine), ou la recrée si dim mismatch."""
|
|
|
|
|
|
|
| 155 |
url = f"{QDRANT_URL}/collections/{coll}"
|
|
|
|
| 156 |
r = await client.get(url, headers={"api-key": QDRANT_API_KEY}, timeout=20)
|
| 157 |
+
recreate = False
|
| 158 |
if r.status_code == 200:
|
|
|
|
| 159 |
data = r.json()
|
| 160 |
existing_size = data.get("result", {}).get("vectors", {}).get("size")
|
| 161 |
if existing_size and int(existing_size) != int(vector_size):
|
| 162 |
LOG.warning(f"Collection {coll} dim={existing_size} ≠ attendu {vector_size} → recréation")
|
| 163 |
await client.delete(url, headers={"api-key": QDRANT_API_KEY}, timeout=20)
|
| 164 |
+
recreate = True
|
| 165 |
else:
|
| 166 |
+
LOG.debug(f"Collection {coll} existante (dim={existing_size})")
|
| 167 |
+
if r.status_code != 200 or recreate:
|
| 168 |
+
body = {"vectors": {"size": vector_size, "distance": "Cosine"}}
|
| 169 |
+
r2 = await client.put(url, headers={"api-key": QDRANT_API_KEY}, json=body, timeout=30)
|
| 170 |
+
if r2.status_code not in (200, 201):
|
| 171 |
+
raise HTTPException(status_code=500, detail=f"Qdrant PUT collection a échoué: {r2.text}")
|
| 172 |
+
|
| 173 |
+
async def qdrant_upsert(client: httpx.AsyncClient, coll: str, points: List[Dict[str, Any]]) -> int:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
if not points:
|
| 175 |
return 0
|
| 176 |
url = f"{QDRANT_URL}/collections/{coll}/points?wait=true"
|
|
|
|
| 182 |
|
| 183 |
async def qdrant_count(client: httpx.AsyncClient, coll: str) -> int:
|
| 184 |
url = f"{QDRANT_URL}/collections/{coll}/points/count"
|
| 185 |
+
r = await client.post(url, headers={"api-key": QDRANT_API_KEY}, json={"exact": True}, timeout=20)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
if r.status_code != 200:
|
| 187 |
raise HTTPException(status_code=500, detail=f"Qdrant count échoué: {r.text}")
|
| 188 |
return int(r.json().get("result", {}).get("count", 0))
|
| 189 |
|
| 190 |
+
async def qdrant_search(client: httpx.AsyncClient, coll: str, vector: List[float], limit: int = 5) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
url = f"{QDRANT_URL}/collections/{coll}/points/search"
|
| 192 |
r = await client.post(
|
| 193 |
url,
|
|
|
|
| 202 |
# ------------------------------------------------------------------------------
|
| 203 |
# Embeddings (HF Inference ou dummy)
|
| 204 |
# ------------------------------------------------------------------------------
|
| 205 |
+
async def embed_hf(client: httpx.AsyncClient, texts: List[str], model: str = HF_EMBED_MODEL, token: str = HF_TOKEN) -> List[List[float]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
if not token:
|
| 207 |
raise HTTPException(status_code=400, detail="HUGGINGFACEHUB_API_TOKEN manquant pour EMB_PROVIDER=hf")
|
| 208 |
url = f"https://api-inference.huggingface.co/models/{model}"
|
| 209 |
headers = {"Authorization": f"Bearer {token}"}
|
|
|
|
| 210 |
payload = {"inputs": texts, "options": {"wait_for_model": True}}
|
| 211 |
r = await client.post(url, headers=headers, json=payload, timeout=120)
|
| 212 |
if r.status_code != 200:
|
| 213 |
raise HTTPException(status_code=502, detail=f"HF Inference error: {r.text}")
|
| 214 |
data = r.json()
|
|
|
|
| 215 |
embeddings: List[List[float]] = []
|
| 216 |
if isinstance(data, list):
|
| 217 |
for row in data:
|
|
|
|
| 223 |
return embeddings
|
| 224 |
|
| 225 |
def embed_dummy(texts: List[str], dim: int = 128) -> List[List[float]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
out: List[List[float]] = []
|
| 227 |
for t in texts:
|
| 228 |
h = hashlib.sha256(t.encode("utf-8")).digest()
|
|
|
|
| 229 |
arr = np.frombuffer((h * ((dim // len(h)) + 1))[:dim], dtype=np.uint8).astype(np.float32)
|
|
|
|
| 230 |
arr = (arr - 127.5) / 127.5
|
| 231 |
arr = arr / (np.linalg.norm(arr) + 1e-9)
|
| 232 |
out.append(arr.astype(np.float32).tolist())
|
|
|
|
| 245 |
job.total_files = len(req.files)
|
| 246 |
job.log(f"Index start project={req.project_id} files={len(req.files)} chunk_size={req.chunk_size} overlap={req.overlap} batch_size={req.batch_size} store_text={req.store_text}")
|
| 247 |
|
| 248 |
+
# Dédup global par hash du texte de fichier
|
| 249 |
file_hashes = [hash8(f.text) for f in req.files]
|
| 250 |
uniq = len(set(file_hashes))
|
| 251 |
if uniq != len(file_hashes):
|
| 252 |
+
job.log(f"Attention: {len(file_hashes)-uniq} fichier(s) ont un texte identique (hash dupliqué).")
|
| 253 |
|
| 254 |
# Chunking
|
| 255 |
records: List[Dict[str, Any]] = []
|
|
|
|
| 258 |
if not chunks:
|
| 259 |
job.log(f"{f.path}: 0 chunk (trop court ou vide)")
|
| 260 |
for idx, (start, end, ch) in enumerate(chunks):
|
| 261 |
+
payload = {"path": f.path, "chunk": idx, "start": start, "end": end}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
if req.store_text:
|
| 263 |
payload["text"] = ch
|
| 264 |
records.append({"payload": payload, "raw": ch})
|
|
|
|
| 271 |
job.finished_at = time.time()
|
| 272 |
return
|
| 273 |
|
|
|
|
| 274 |
async with httpx.AsyncClient(timeout=120) as client:
|
| 275 |
+
# Warmup dim
|
| 276 |
warmup_vec = (await embed_texts(client, [records[0]["raw"]]))[0]
|
| 277 |
vec_dim = len(warmup_vec)
|
| 278 |
job.log(f"Warmup embeddings dim={vec_dim} provider={EMB_PROVIDER}")
|
| 279 |
|
| 280 |
+
# Collection Qdrant
|
| 281 |
coll = f"{COLLECTION_PREFIX}{req.project_id}"
|
| 282 |
await ensure_collection(client, coll, vector_size=vec_dim)
|
| 283 |
|
| 284 |
job.stage = "upserting"
|
|
|
|
| 285 |
batch_points: List[Dict[str, Any]] = []
|
| 286 |
|
| 287 |
async def flush_batch():
|
| 288 |
+
nonlocal batch_points
|
| 289 |
if not batch_points:
|
| 290 |
return 0
|
| 291 |
added = await qdrant_upsert(client, coll, batch_points)
|
| 292 |
job.upserted += added
|
| 293 |
job.log(f"+{added} points upsert (total={job.upserted})")
|
|
|
|
| 294 |
batch_points = []
|
| 295 |
return added
|
| 296 |
|
|
|
|
| 297 |
EMB_BATCH = max(8, min(64, req.batch_size * 2))
|
| 298 |
i = 0
|
| 299 |
while i < len(records):
|
|
|
|
| 305 |
job.embedded += len(vecs)
|
| 306 |
|
| 307 |
for r, v in zip(sub, vecs):
|
| 308 |
+
point = {"id": str(uuid.uuid4()), "vector": v, "payload": r["payload"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
batch_points.append(point)
|
| 310 |
if len(batch_points) >= req.batch_size:
|
| 311 |
await flush_batch()
|
| 312 |
i += EMB_BATCH
|
| 313 |
|
|
|
|
| 314 |
await flush_batch()
|
| 315 |
|
| 316 |
job.stage = "done"
|
|
|
|
| 328 |
allow_headers=["*"],
|
| 329 |
)
|
| 330 |
|
| 331 |
+
@fastapi_app.get("/health")
|
| 332 |
+
async def health():
|
| 333 |
+
return {"status": "ok"}
|
| 334 |
+
|
| 335 |
@fastapi_app.get("/")
|
| 336 |
async def root():
|
| 337 |
return {"ok": True, "service": "remote-indexer-min", "qdrant": bool(QDRANT_URL), "emb_provider": EMB_PROVIDER}
|
|
|
|
| 354 |
job_id = uuid.uuid4().hex[:12]
|
| 355 |
job = JobState(job_id=job_id, project_id=req.project_id)
|
| 356 |
JOBS[job_id] = job
|
|
|
|
| 357 |
asyncio.create_task(run_index_job(job, req))
|
| 358 |
job.log(f"Job {job_id} créé pour project {req.project_id}")
|
| 359 |
return {"job_id": job_id, "project_id": req.project_id}
|
|
|
|
| 385 |
return data
|
| 386 |
|
| 387 |
# ------------------------------------------------------------------------------
|
| 388 |
+
# Gradio UI
|
| 389 |
# ------------------------------------------------------------------------------
|
| 390 |
def _default_two_docs() -> List[Dict[str, str]]:
|
| 391 |
a = "Alpha bravo charlie delta echo foxtrot golf hotel india. " * 3
|
| 392 |
+
b = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy. " * 3
|
| 393 |
+
return [{"path": "a.txt", "text": a}, {"path": "b.txt", "text": b}]
|
|
|
|
|
|
|
|
|
|
| 394 |
|
| 395 |
async def ui_wipe(project: str):
|
| 396 |
try:
|
|
|
|
| 425 |
return "⚠️ Renseigne un job_id"
|
| 426 |
try:
|
| 427 |
st = await status(job_id)
|
|
|
|
| 428 |
lines = [f"Job {st['job_id']} — stage={st['stage']} files={st['total_files']} chunks={st['total_chunks']} embedded={st['embedded']} upserted={st['upserted']}"]
|
| 429 |
+
lines += st.get("messages", [])[-50:]
|
| 430 |
if st.get("errors"):
|
| 431 |
lines.append("Erreurs:")
|
| 432 |
lines += [f" - {e}" for e in st["errors"]]
|
|
|
|
| 466 |
"Wipe → Index 2 docs → Status → Count → Query\n"
|
| 467 |
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`)\n"
|
| 468 |
f"- **Qdrant**: `{'OK' if QDRANT_URL else 'ABSENT'}`\n"
|
| 469 |
+
"Astuce: si pas de token HF, mets `EMB_PROVIDER=dummy`.")
|
| 470 |
with gr.Row():
|
| 471 |
project_tb = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 472 |
jobid_tb = gr.Textbox(label="Job ID (pour Status)", value="", interactive=True)
|
|
|
|
| 488 |
|
| 489 |
wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log])
|
| 490 |
index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log])
|
|
|
|
| 491 |
count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log])
|
| 492 |
query_btn.click(ui_query, inputs=[project_tb, query_tb, topk], outputs=[query_out])
|
| 493 |
|
| 494 |
# Monte l'UI Gradio sur la FastAPI
|
| 495 |
app = gr.mount_gradio_app(fastapi_app, ui, path="/")
|
| 496 |
+
|
| 497 |
+
if __name__ == "__main__":
|
| 498 |
+
# Démarre Uvicorn pour les Spaces Docker (CMD: python -u /app/main.py)
|
| 499 |
+
port = int(os.getenv("PORT", "7860"))
|
| 500 |
+
LOG.info(f"Démarrage Uvicorn sur 0.0.0.0:{port}")
|
| 501 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|