Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -9,6 +9,7 @@ import tarfile
|
|
| 9 |
import logging
|
| 10 |
import hashlib
|
| 11 |
from typing import Dict, Any, List, Tuple, Optional
|
|
|
|
| 12 |
|
| 13 |
import numpy as np
|
| 14 |
import faiss
|
|
@@ -22,18 +23,25 @@ import gradio as gr
|
|
| 22 |
# =============================================================================
|
| 23 |
# LOGGING
|
| 24 |
# =============================================================================
|
| 25 |
-
LOG = logging.getLogger("remote-indexer-
|
| 26 |
if not LOG.handlers:
|
| 27 |
h = logging.StreamHandler()
|
| 28 |
h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
|
| 29 |
LOG.addHandler(h)
|
| 30 |
LOG.setLevel(logging.INFO)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# =============================================================================
|
| 33 |
# CONFIG (via ENV)
|
| 34 |
# =============================================================================
|
| 35 |
PORT = int(os.getenv("PORT", "7860"))
|
| 36 |
-
DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data") # stockage interne du Space
|
| 37 |
os.makedirs(DATA_ROOT, exist_ok=True)
|
| 38 |
|
| 39 |
# Provider d'embeddings:
|
|
@@ -45,11 +53,13 @@ EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/paraphrase-multilingua
|
|
| 45 |
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))
|
| 46 |
EMB_DIM = int(os.getenv("EMB_DIM", "128")) # utilisé pour dummy
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
# =============================================================================
|
| 49 |
-
# CACHE DIRECTORIES (
|
| 50 |
# =============================================================================
|
| 51 |
def _setup_cache_dirs() -> Dict[str, str]:
|
| 52 |
-
# HOME peut être vide -> expanduser('~') => '/' -> '/.cache' -> Permission denied
|
| 53 |
os.environ.setdefault("HOME", "/home/user")
|
| 54 |
|
| 55 |
CACHE_ROOT = os.getenv("CACHE_ROOT", "/tmp/.cache").rstrip("/")
|
|
@@ -68,15 +78,12 @@ def _setup_cache_dirs() -> Dict[str, str]:
|
|
| 68 |
except Exception as e:
|
| 69 |
LOG.warning("Impossible de créer %s : %s", p, e)
|
| 70 |
|
| 71 |
-
# Variables standard HF/Transformers/Torch/ST
|
| 72 |
os.environ["HF_HOME"] = paths["hf_home"]
|
| 73 |
os.environ["HF_HUB_CACHE"] = paths["hf_hub"]
|
| 74 |
os.environ["TRANSFORMERS_CACHE"] = paths["hf_tf"]
|
| 75 |
os.environ["TORCH_HOME"] = paths["torch"]
|
| 76 |
os.environ["SENTENCE_TRANSFORMERS_HOME"] = paths["st"]
|
| 77 |
-
os.environ["MPLCONFIGDIR"] = paths["mpl"]
|
| 78 |
-
|
| 79 |
-
# Qualité de vie
|
| 80 |
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
|
| 81 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 82 |
|
|
@@ -122,6 +129,7 @@ def _proj_dirs(project_id: str) -> Tuple[str, str, str]:
|
|
| 122 |
def _add_msg(st: JobState, msg: str):
|
| 123 |
st.messages.append(f"[{_now()}] {msg}")
|
| 124 |
LOG.info("[%s] %s", st.job_id, msg)
|
|
|
|
| 125 |
|
| 126 |
def _set_stage(st: JobState, stage: str):
|
| 127 |
st.stage = stage
|
|
@@ -183,14 +191,6 @@ def _emb_st(texts: List[str]) -> np.ndarray:
|
|
| 183 |
).astype("float32")
|
| 184 |
return vecs
|
| 185 |
|
| 186 |
-
def _st_dim() -> int:
|
| 187 |
-
model = _get_st_model()
|
| 188 |
-
try:
|
| 189 |
-
return int(model.get_sentence_embedding_dimension())
|
| 190 |
-
except Exception:
|
| 191 |
-
v = model.encode(["dimension probe"], convert_to_numpy=True)
|
| 192 |
-
return int(v.shape[1])
|
| 193 |
-
|
| 194 |
# ----------------------- PROVIDER: Transformers (HF) --------------------------
|
| 195 |
def _get_hf_model():
|
| 196 |
global _HF_TOKENIZER, _HF_MODEL
|
|
@@ -219,18 +219,11 @@ def _emb_hf(texts: List[str]) -> np.ndarray:
|
|
| 219 |
enc = tok(batch, padding=True, truncation=True, return_tensors="pt")
|
| 220 |
out = mod(**enc)
|
| 221 |
last = out.last_hidden_state # (b, t, h)
|
| 222 |
-
pooled = _mean_pool(last.numpy(), enc["attention_mask"].numpy())
|
| 223 |
all_vecs.append(pooled.astype("float32"))
|
| 224 |
vecs = np.concatenate(all_vecs, axis=0)
|
| 225 |
return _l2_normalize(vecs)
|
| 226 |
|
| 227 |
-
def _hf_dim() -> int:
|
| 228 |
-
try:
|
| 229 |
-
_, mod = _get_hf_model()
|
| 230 |
-
return int(getattr(mod.config, "hidden_size", 768))
|
| 231 |
-
except Exception:
|
| 232 |
-
return 768
|
| 233 |
-
|
| 234 |
# ---------------------------- DATASET / FAISS ---------------------------------
|
| 235 |
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]]):
|
| 236 |
os.makedirs(ds_dir, exist_ok=True)
|
|
@@ -278,74 +271,44 @@ def _tar_dir_to_bytes(dir_path: str) -> bytes:
|
|
| 278 |
return bio.read()
|
| 279 |
|
| 280 |
# =============================================================================
|
| 281 |
-
#
|
| 282 |
# =============================================================================
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
text: str
|
| 292 |
-
|
| 293 |
-
class IndexRequest(BaseModel):
|
| 294 |
-
project_id: str
|
| 295 |
-
files: List[FileItem]
|
| 296 |
-
chunk_size: int = 200
|
| 297 |
-
overlap: int = 20
|
| 298 |
-
batch_size: int = 32
|
| 299 |
-
store_text: bool = True
|
| 300 |
-
|
| 301 |
-
@fastapi_app.get("/health")
|
| 302 |
-
def health():
|
| 303 |
-
info = {
|
| 304 |
-
"ok": True,
|
| 305 |
-
"service": "remote-indexer",
|
| 306 |
-
"provider": EMB_PROVIDER,
|
| 307 |
-
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None,
|
| 308 |
-
"cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"),
|
| 309 |
-
}
|
| 310 |
-
return info
|
| 311 |
-
|
| 312 |
-
@fastapi_app.get("/")
|
| 313 |
-
def root_redirect():
|
| 314 |
-
return {"ok": True, "service": "remote-indexer", "ui": "/ui"}
|
| 315 |
-
|
| 316 |
-
@fastapi_app.post("/index")
|
| 317 |
-
def index(req: IndexRequest):
|
| 318 |
-
job_id = hashlib.sha1(f"{req.project_id}{time.time()}".encode()).hexdigest()[:12]
|
| 319 |
-
st = JobState(job_id=job_id, project_id=req.project_id, stage="pending", messages=[])
|
| 320 |
-
JOBS[job_id] = st
|
| 321 |
-
_add_msg(st, f"Job {job_id} créé pour project {req.project_id}")
|
| 322 |
-
_add_msg(st, f"Index start project={req.project_id} files={len(req.files)} chunk_size={req.chunk_size} overlap={req.overlap} batch_size={req.batch_size} store_text={req.store_text} provider={EMB_PROVIDER} model={EMB_MODEL if EMB_PROVIDER!='dummy' else '-'}")
|
| 323 |
try:
|
| 324 |
-
base, ds_dir, fx_dir = _proj_dirs(
|
| 325 |
|
| 326 |
# 1) Chunking
|
| 327 |
_set_stage(st, "chunking")
|
| 328 |
rows: List[Dict[str, Any]] = []
|
| 329 |
-
st.total_files = len(
|
| 330 |
-
for it in
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
| 336 |
st.total_chunks = len(rows)
|
| 337 |
_add_msg(st, f"Total chunks = {st.total_chunks}")
|
| 338 |
|
| 339 |
# 2) Embedding
|
| 340 |
_set_stage(st, "embedding")
|
|
|
|
| 341 |
if EMB_PROVIDER == "dummy":
|
| 342 |
-
xb = _emb_dummy(
|
| 343 |
dim = xb.shape[1]
|
| 344 |
elif EMB_PROVIDER == "st":
|
| 345 |
-
xb = _emb_st(
|
| 346 |
dim = xb.shape[1]
|
| 347 |
-
else:
|
| 348 |
-
xb = _emb_hf(
|
| 349 |
dim = xb.shape[1]
|
| 350 |
|
| 351 |
st.embedded = xb.shape[0]
|
|
@@ -367,17 +330,86 @@ def index(req: IndexRequest):
|
|
| 367 |
_save_faiss(fx_dir, xb, meta=faiss_meta)
|
| 368 |
st.indexed = int(xb.shape[0])
|
| 369 |
_add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}")
|
| 370 |
-
_add_msg(st, f"OK — dataset+index prêts (projet={
|
| 371 |
|
| 372 |
_set_stage(st, "done")
|
| 373 |
st.finished_at = time.time()
|
| 374 |
-
return {"job_id": job_id}
|
| 375 |
except Exception as e:
|
| 376 |
-
LOG.exception("
|
| 377 |
st.errors.append(str(e))
|
| 378 |
_add_msg(st, f"❌ Exception: {e}")
|
| 379 |
st.stage = "failed"
|
| 380 |
st.finished_at = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
raise HTTPException(status_code=500, detail=str(e))
|
| 382 |
|
| 383 |
@fastapi_app.get("/status/{job_id}")
|
|
@@ -395,9 +427,16 @@ class SearchRequest(BaseModel):
|
|
| 395 |
@fastapi_app.post("/search")
|
| 396 |
def search(req: SearchRequest):
|
| 397 |
base, ds_dir, fx_dir = _proj_dirs(req.project_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
rows = _load_dataset(ds_dir)
|
| 399 |
if not rows:
|
| 400 |
-
raise HTTPException(status_code=404, detail="dataset introuvable
|
| 401 |
|
| 402 |
# Embedding de la requête avec le MÊME provider
|
| 403 |
if EMB_PROVIDER == "dummy":
|
|
@@ -443,7 +482,7 @@ def download_faiss(project_id: str):
|
|
| 443 |
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=headers)
|
| 444 |
|
| 445 |
# =============================================================================
|
| 446 |
-
# GRADIO UI (facultatif)
|
| 447 |
# =============================================================================
|
| 448 |
def _ui_index(project_id: str, sample_text: str):
|
| 449 |
files = [{"path": "sample.txt", "text": sample_text}]
|
|
@@ -465,9 +504,9 @@ def _ui_search(project_id: str, query: str, k: int):
|
|
| 465 |
except Exception as e:
|
| 466 |
return f"Erreur search: {e}"
|
| 467 |
|
| 468 |
-
with gr.Blocks(title="Remote Indexer (FAISS)", analytics_enabled=False) as ui:
|
| 469 |
-
gr.Markdown("## Remote Indexer —
|
| 470 |
-
gr.Markdown(f"**Provider**: `{EMB_PROVIDER}` — **Model**: `{EMB_MODEL if EMB_PROVIDER!='dummy' else '-'}` — **Cache**: `{os.getenv('CACHE_ROOT', '/tmp/.cache')}`")
|
| 471 |
with gr.Tab("Index"):
|
| 472 |
pid = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 473 |
sample = gr.Textbox(label="Texte d’exemple", value="Alpha bravo charlie delta echo foxtrot.", lines=4)
|
|
@@ -490,5 +529,5 @@ fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui")
|
|
| 490 |
# =============================================================================
|
| 491 |
if __name__ == "__main__":
|
| 492 |
import uvicorn
|
| 493 |
-
LOG.info("Démarrage Uvicorn sur 0.0.0.0:%s (UI_PATH=/ui)", PORT)
|
| 494 |
-
uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)
|
|
|
|
| 9 |
import logging
|
| 10 |
import hashlib
|
| 11 |
from typing import Dict, Any, List, Tuple, Optional
|
| 12 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
|
| 14 |
import numpy as np
|
| 15 |
import faiss
|
|
|
|
| 23 |
# =============================================================================
|
| 24 |
# LOGGING
|
| 25 |
# =============================================================================
|
| 26 |
+
LOG = logging.getLogger("remote-indexer-async")
|
| 27 |
if not LOG.handlers:
|
| 28 |
h = logging.StreamHandler()
|
| 29 |
h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
|
| 30 |
LOG.addHandler(h)
|
| 31 |
LOG.setLevel(logging.INFO)
|
| 32 |
|
| 33 |
+
DBG = logging.getLogger("remote-indexer-async.debug")
|
| 34 |
+
if not DBG.handlers:
|
| 35 |
+
hd = logging.StreamHandler()
|
| 36 |
+
hd.setFormatter(logging.Formatter("[DEBUG] %(asctime)s - %(message)s"))
|
| 37 |
+
DBG.addHandler(hd)
|
| 38 |
+
DBG.setLevel(logging.DEBUG)
|
| 39 |
+
|
| 40 |
# =============================================================================
|
| 41 |
# CONFIG (via ENV)
|
| 42 |
# =============================================================================
|
| 43 |
PORT = int(os.getenv("PORT", "7860"))
|
| 44 |
+
DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data") # stockage interne du Space (volatile en Free)
|
| 45 |
os.makedirs(DATA_ROOT, exist_ok=True)
|
| 46 |
|
| 47 |
# Provider d'embeddings:
|
|
|
|
| 53 |
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))
|
| 54 |
EMB_DIM = int(os.getenv("EMB_DIM", "128")) # utilisé pour dummy
|
| 55 |
|
| 56 |
+
# Taille du pool de workers (asynchrone)
|
| 57 |
+
MAX_WORKERS = int(os.getenv("MAX_WORKERS", "1"))
|
| 58 |
+
|
| 59 |
# =============================================================================
|
| 60 |
+
# CACHE DIRECTORIES (évite PermissionError: '/.cache')
|
| 61 |
# =============================================================================
|
| 62 |
def _setup_cache_dirs() -> Dict[str, str]:
|
|
|
|
| 63 |
os.environ.setdefault("HOME", "/home/user")
|
| 64 |
|
| 65 |
CACHE_ROOT = os.getenv("CACHE_ROOT", "/tmp/.cache").rstrip("/")
|
|
|
|
| 78 |
except Exception as e:
|
| 79 |
LOG.warning("Impossible de créer %s : %s", p, e)
|
| 80 |
|
|
|
|
| 81 |
os.environ["HF_HOME"] = paths["hf_home"]
|
| 82 |
os.environ["HF_HUB_CACHE"] = paths["hf_hub"]
|
| 83 |
os.environ["TRANSFORMERS_CACHE"] = paths["hf_tf"]
|
| 84 |
os.environ["TORCH_HOME"] = paths["torch"]
|
| 85 |
os.environ["SENTENCE_TRANSFORMERS_HOME"] = paths["st"]
|
| 86 |
+
os.environ["MPLCONFIGDIR"] = paths["mpl"]
|
|
|
|
|
|
|
| 87 |
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
|
| 88 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 89 |
|
|
|
|
| 129 |
def _add_msg(st: JobState, msg: str):
|
| 130 |
st.messages.append(f"[{_now()}] {msg}")
|
| 131 |
LOG.info("[%s] %s", st.job_id, msg)
|
| 132 |
+
DBG.debug("[%s] %s", st.job_id, msg)
|
| 133 |
|
| 134 |
def _set_stage(st: JobState, stage: str):
|
| 135 |
st.stage = stage
|
|
|
|
| 191 |
).astype("float32")
|
| 192 |
return vecs
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
# ----------------------- PROVIDER: Transformers (HF) --------------------------
|
| 195 |
def _get_hf_model():
|
| 196 |
global _HF_TOKENIZER, _HF_MODEL
|
|
|
|
| 219 |
enc = tok(batch, padding=True, truncation=True, return_tensors="pt")
|
| 220 |
out = mod(**enc)
|
| 221 |
last = out.last_hidden_state # (b, t, h)
|
| 222 |
+
pooled = _mean_pool(last.numpy(), enc["attention_mask"].numpy())
|
| 223 |
all_vecs.append(pooled.astype("float32"))
|
| 224 |
vecs = np.concatenate(all_vecs, axis=0)
|
| 225 |
return _l2_normalize(vecs)
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
# ---------------------------- DATASET / FAISS ---------------------------------
|
| 228 |
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]]):
|
| 229 |
os.makedirs(ds_dir, exist_ok=True)
|
|
|
|
| 271 |
return bio.read()
|
| 272 |
|
| 273 |
# =============================================================================
|
| 274 |
+
# WORKER POOL (asynchrone)
|
| 275 |
# =============================================================================
|
| 276 |
+
EXECUTOR = ThreadPoolExecutor(max_workers=max(1, MAX_WORKERS))
|
| 277 |
+
LOG.info("ThreadPoolExecutor initialisé : max_workers=%s", MAX_WORKERS)
|
| 278 |
+
|
| 279 |
+
def _do_index_job(st: JobState, files: List[Dict[str, str]], chunk_size: int, overlap: int, batch_size: int, store_text: bool) -> None:
|
| 280 |
+
"""
|
| 281 |
+
Tâche lourde lancée dans un worker thread.
|
| 282 |
+
Met à jour l'état 'st' tout au long du pipeline.
|
| 283 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
try:
|
| 285 |
+
base, ds_dir, fx_dir = _proj_dirs(st.project_id)
|
| 286 |
|
| 287 |
# 1) Chunking
|
| 288 |
_set_stage(st, "chunking")
|
| 289 |
rows: List[Dict[str, Any]] = []
|
| 290 |
+
st.total_files = len(files)
|
| 291 |
+
for it in files:
|
| 292 |
+
path = (it.get("path") or "unknown").strip()
|
| 293 |
+
txt = it.get("text") or ""
|
| 294 |
+
chks = _chunk_text(txt, size=int(chunk_size), overlap=int(overlap))
|
| 295 |
+
_add_msg(st, f"{path}: len(text)={len(txt)} chunks={len(chks)}")
|
| 296 |
+
for ci, ck in enumerate(chks):
|
| 297 |
+
rows.append({"path": path, "text": ck, "chunk_id": ci})
|
| 298 |
st.total_chunks = len(rows)
|
| 299 |
_add_msg(st, f"Total chunks = {st.total_chunks}")
|
| 300 |
|
| 301 |
# 2) Embedding
|
| 302 |
_set_stage(st, "embedding")
|
| 303 |
+
texts = [r["text"] for r in rows]
|
| 304 |
if EMB_PROVIDER == "dummy":
|
| 305 |
+
xb = _emb_dummy(texts, dim=EMB_DIM)
|
| 306 |
dim = xb.shape[1]
|
| 307 |
elif EMB_PROVIDER == "st":
|
| 308 |
+
xb = _emb_st(texts)
|
| 309 |
dim = xb.shape[1]
|
| 310 |
+
else:
|
| 311 |
+
xb = _emb_hf(texts)
|
| 312 |
dim = xb.shape[1]
|
| 313 |
|
| 314 |
st.embedded = xb.shape[0]
|
|
|
|
| 330 |
_save_faiss(fx_dir, xb, meta=faiss_meta)
|
| 331 |
st.indexed = int(xb.shape[0])
|
| 332 |
_add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}")
|
| 333 |
+
_add_msg(st, f"OK — dataset+index prêts (projet={st.project_id})")
|
| 334 |
|
| 335 |
_set_stage(st, "done")
|
| 336 |
st.finished_at = time.time()
|
|
|
|
| 337 |
except Exception as e:
|
| 338 |
+
LOG.exception("Job %s failed", st.job_id)
|
| 339 |
st.errors.append(str(e))
|
| 340 |
_add_msg(st, f"❌ Exception: {e}")
|
| 341 |
st.stage = "failed"
|
| 342 |
st.finished_at = time.time()
|
| 343 |
+
|
| 344 |
+
def _submit_job(project_id: str, files: List[Dict[str, str]], chunk_size: int, overlap: int, batch_size: int, store_text: bool) -> str:
|
| 345 |
+
job_id = hashlib.sha1(f"{project_id}{time.time()}".encode()).hexdigest()[:12]
|
| 346 |
+
st = JobState(job_id=job_id, project_id=project_id, stage="pending", messages=[])
|
| 347 |
+
JOBS[job_id] = st
|
| 348 |
+
_add_msg(st, f"Job {job_id} créé pour project {project_id}")
|
| 349 |
+
_add_msg(st, f"Index start project={project_id} files={len(files)} chunk_size={chunk_size} overlap={overlap} batch_size={batch_size} store_text={store_text} provider={EMB_PROVIDER} model={EMB_MODEL if EMB_PROVIDER!='dummy' else '-'}")
|
| 350 |
+
|
| 351 |
+
# Soumission au pool (retour immédiat)
|
| 352 |
+
EXECUTOR.submit(_do_index_job, st, files, chunk_size, overlap, batch_size, store_text)
|
| 353 |
+
_set_stage(st, "queued")
|
| 354 |
+
return job_id
|
| 355 |
+
|
| 356 |
+
# =============================================================================
|
| 357 |
+
# FASTAPI
|
| 358 |
+
# =============================================================================
|
| 359 |
+
fastapi_app = FastAPI(title="remote-indexer-async", version="3.0.0")
|
| 360 |
+
fastapi_app.add_middleware(
|
| 361 |
+
CORSMiddleware,
|
| 362 |
+
allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"],
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
class FileItem(BaseModel):
|
| 366 |
+
path: str
|
| 367 |
+
text: str
|
| 368 |
+
|
| 369 |
+
class IndexRequest(BaseModel):
|
| 370 |
+
project_id: str
|
| 371 |
+
files: List[FileItem]
|
| 372 |
+
chunk_size: int = 200
|
| 373 |
+
overlap: int = 20
|
| 374 |
+
batch_size: int = 32
|
| 375 |
+
store_text: bool = True
|
| 376 |
+
|
| 377 |
+
@fastapi_app.get("/health")
|
| 378 |
+
def health():
|
| 379 |
+
info = {
|
| 380 |
+
"ok": True,
|
| 381 |
+
"service": "remote-indexer-async",
|
| 382 |
+
"provider": EMB_PROVIDER,
|
| 383 |
+
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None,
|
| 384 |
+
"cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"),
|
| 385 |
+
"workers": MAX_WORKERS,
|
| 386 |
+
"data_root": DATA_ROOT,
|
| 387 |
+
}
|
| 388 |
+
return info
|
| 389 |
+
|
| 390 |
+
@fastapi_app.get("/")
|
| 391 |
+
def root_redirect():
|
| 392 |
+
return {"ok": True, "service": "remote-indexer-async", "ui": "/ui"}
|
| 393 |
+
|
| 394 |
+
@fastapi_app.post("/index")
|
| 395 |
+
def index(req: IndexRequest):
|
| 396 |
+
"""
|
| 397 |
+
ASYNCHRONE : retourne immédiatement un job_id.
|
| 398 |
+
Le traitement est effectué en arrière-plan par le pool de threads.
|
| 399 |
+
"""
|
| 400 |
+
try:
|
| 401 |
+
files = [fi.model_dump() for fi in req.files]
|
| 402 |
+
job_id = _submit_job(
|
| 403 |
+
project_id=req.project_id,
|
| 404 |
+
files=files,
|
| 405 |
+
chunk_size=int(req.chunk_size),
|
| 406 |
+
overlap=int(req.overlap),
|
| 407 |
+
batch_size=int(req.batch_size),
|
| 408 |
+
store_text=bool(req.store_text),
|
| 409 |
+
)
|
| 410 |
+
return {"job_id": job_id}
|
| 411 |
+
except Exception as e:
|
| 412 |
+
LOG.exception("index failed (submit)")
|
| 413 |
raise HTTPException(status_code=500, detail=str(e))
|
| 414 |
|
| 415 |
@fastapi_app.get("/status/{job_id}")
|
|
|
|
| 427 |
@fastapi_app.post("/search")
|
| 428 |
def search(req: SearchRequest):
|
| 429 |
base, ds_dir, fx_dir = _proj_dirs(req.project_id)
|
| 430 |
+
|
| 431 |
+
# Si l'index n'existe pas encore, on répond 409 (conflit / pas prêt)
|
| 432 |
+
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 433 |
+
ds_path = os.path.join(ds_dir, "data.jsonl")
|
| 434 |
+
if not (os.path.isfile(idx_path) and os.path.isfile(ds_path)):
|
| 435 |
+
raise HTTPException(status_code=409, detail="Index non prêt (reviens plus tard)")
|
| 436 |
+
|
| 437 |
rows = _load_dataset(ds_dir)
|
| 438 |
if not rows:
|
| 439 |
+
raise HTTPException(status_code=404, detail="dataset introuvable")
|
| 440 |
|
| 441 |
# Embedding de la requête avec le MÊME provider
|
| 442 |
if EMB_PROVIDER == "dummy":
|
|
|
|
| 482 |
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=headers)
|
| 483 |
|
| 484 |
# =============================================================================
|
| 485 |
+
# GRADIO UI (facultatif de test)
|
| 486 |
# =============================================================================
|
| 487 |
def _ui_index(project_id: str, sample_text: str):
|
| 488 |
files = [{"path": "sample.txt", "text": sample_text}]
|
|
|
|
| 504 |
except Exception as e:
|
| 505 |
return f"Erreur search: {e}"
|
| 506 |
|
| 507 |
+
with gr.Blocks(title="Remote Indexer (Async FAISS)", analytics_enabled=False) as ui:
|
| 508 |
+
gr.Markdown("## Remote Indexer — **Async** (API: `/index`, `/status/{job}`, `/search`, `/artifacts/...`).")
|
| 509 |
+
gr.Markdown(f"**Provider**: `{EMB_PROVIDER}` — **Model**: `{EMB_MODEL if EMB_PROVIDER!='dummy' else '-'}` — **Cache**: `{os.getenv('CACHE_ROOT', '/tmp/.cache')}` — **Workers**: `{MAX_WORKERS}`")
|
| 510 |
with gr.Tab("Index"):
|
| 511 |
pid = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 512 |
sample = gr.Textbox(label="Texte d’exemple", value="Alpha bravo charlie delta echo foxtrot.", lines=4)
|
|
|
|
| 529 |
# =============================================================================
|
| 530 |
if __name__ == "__main__":
|
| 531 |
import uvicorn
|
| 532 |
+
LOG.info("Démarrage Uvicorn sur 0.0.0.0:%s (UI_PATH=/ui) — async index", PORT)
|
| 533 |
+
uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)
|