Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,26 +1,14 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
-
"""
|
| 3 |
-
FastAPI + Gradio : service d’indexation asynchrone avec FAISS.
|
| 4 |
-
Ce fichier a été corrigé pour :
|
| 5 |
-
|
| 6 |
-
* importer correctement `JobState` (import relatif)
|
| 7 |
-
* garantir que le répertoire `app` est dans le PYTHONPATH lorsqu’on lance le script
|
| 8 |
-
* conserver toutes les fonctionnalités précédentes (indexation, recherche, UI)
|
| 9 |
-
"""
|
| 10 |
-
|
| 11 |
from __future__ import annotations
|
| 12 |
|
| 13 |
import os
|
| 14 |
import io
|
| 15 |
import json
|
| 16 |
import time
|
| 17 |
-
import hashlib
|
| 18 |
-
import logging
|
| 19 |
import tarfile
|
| 20 |
-
import
|
| 21 |
-
|
| 22 |
-
from typing import
|
| 23 |
-
|
| 24 |
from concurrent.futures import ThreadPoolExecutor
|
| 25 |
|
| 26 |
import numpy as np
|
|
@@ -32,19 +20,9 @@ from pydantic import BaseModel
|
|
| 32 |
|
| 33 |
import gradio as gr
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
#
|
| 37 |
-
#
|
| 38 |
-
# Si le script est lancé depuis le répertoire `app/`, le package `app` n’est pas
|
| 39 |
-
# découvert automatiquement. On ajoute le répertoire parent au sys.path.
|
| 40 |
-
CURRENT_DIR = Path(__file__).resolve().parent
|
| 41 |
-
PROJECT_ROOT = CURRENT_DIR.parent
|
| 42 |
-
if str(PROJECT_ROOT) not in sys.path:
|
| 43 |
-
sys.path.insert(0, str(PROJECT_ROOT))
|
| 44 |
-
|
| 45 |
-
# --------------------------------------------------------------------------- #
|
| 46 |
-
# LOGGING
|
| 47 |
-
# --------------------------------------------------------------------------- #
|
| 48 |
LOG = logging.getLogger("remote-indexer-async")
|
| 49 |
if not LOG.handlers:
|
| 50 |
h = logging.StreamHandler()
|
|
@@ -59,25 +37,31 @@ if not DBG.handlers:
|
|
| 59 |
DBG.addHandler(hd)
|
| 60 |
DBG.setLevel(logging.DEBUG)
|
| 61 |
|
| 62 |
-
#
|
| 63 |
-
#
|
| 64 |
-
#
|
| 65 |
PORT = int(os.getenv("PORT", "7860"))
|
| 66 |
-
DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data")
|
| 67 |
os.makedirs(DATA_ROOT, exist_ok=True)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "dummy").strip().lower()
|
| 70 |
EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/all-mpnet-base-v2").strip()
|
| 71 |
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))
|
| 72 |
-
EMB_DIM = int(os.getenv("EMB_DIM", "
|
| 73 |
|
|
|
|
| 74 |
MAX_WORKERS = int(os.getenv("MAX_WORKERS", "1"))
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
#
|
| 78 |
-
#
|
| 79 |
def _setup_cache_dirs() -> Dict[str, str]:
|
| 80 |
os.environ.setdefault("HOME", "/home/user")
|
|
|
|
| 81 |
CACHE_ROOT = os.getenv("CACHE_ROOT", "/tmp/.cache").rstrip("/")
|
| 82 |
paths = {
|
| 83 |
"root": CACHE_ROOT,
|
|
@@ -103,22 +87,32 @@ def _setup_cache_dirs() -> Dict[str, str]:
|
|
| 103 |
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
|
| 104 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 105 |
|
| 106 |
-
LOG.info("Caches configurés
|
| 107 |
return paths
|
| 108 |
|
| 109 |
-
|
| 110 |
CACHE_PATHS = _setup_cache_dirs()
|
| 111 |
|
| 112 |
-
#
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
# --------------------------------------------------------------------------- #
|
| 120 |
-
# GLOBALS
|
| 121 |
-
# --------------------------------------------------------------------------- #
|
| 122 |
JOBS: Dict[str, JobState] = {}
|
| 123 |
|
| 124 |
def _now() -> str:
|
|
@@ -132,18 +126,18 @@ def _proj_dirs(project_id: str) -> Tuple[str, str, str]:
|
|
| 132 |
os.makedirs(fx_dir, exist_ok=True)
|
| 133 |
return base, ds_dir, fx_dir
|
| 134 |
|
| 135 |
-
def _add_msg(st: JobState, msg: str)
|
| 136 |
st.messages.append(f"[{_now()}] {msg}")
|
| 137 |
LOG.info("[%s] %s", st.job_id, msg)
|
| 138 |
DBG.debug("[%s] %s", st.job_id, msg)
|
| 139 |
|
| 140 |
-
def _set_stage(st: JobState, stage: str)
|
| 141 |
st.stage = stage
|
| 142 |
_add_msg(st, f"stage={stage}")
|
| 143 |
|
| 144 |
-
#
|
| 145 |
-
#
|
| 146 |
-
#
|
| 147 |
def _chunk_text(text: str, size: int = 200, overlap: int = 20) -> List[str]:
|
| 148 |
text = (text or "").replace("\r\n", "\n")
|
| 149 |
tokens = list(text)
|
|
@@ -167,13 +161,7 @@ def _l2_normalize(x: np.ndarray) -> np.ndarray:
|
|
| 167 |
n = np.linalg.norm(x, axis=1, keepdims=True) + 1e-12
|
| 168 |
return x / n
|
| 169 |
|
| 170 |
-
#
|
| 171 |
-
# EMBEDDING PROVIDERS
|
| 172 |
-
# --------------------------------------------------------------------------- #
|
| 173 |
-
_ST_MODEL = None
|
| 174 |
-
_HF_TOKENIZER = None
|
| 175 |
-
_HF_MODEL = None
|
| 176 |
-
|
| 177 |
def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
|
| 178 |
vecs = np.zeros((len(texts), dim), dtype="float32")
|
| 179 |
for i, t in enumerate(texts):
|
|
@@ -183,12 +171,13 @@ def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
|
|
| 183 |
vecs[i] = v / (np.linalg.norm(v) + 1e-9)
|
| 184 |
return vecs
|
| 185 |
|
|
|
|
| 186 |
def _get_st_model():
|
| 187 |
global _ST_MODEL
|
| 188 |
if _ST_MODEL is None:
|
| 189 |
from sentence_transformers import SentenceTransformer
|
| 190 |
_ST_MODEL = SentenceTransformer(EMB_MODEL, cache_folder=CACHE_PATHS["st"])
|
| 191 |
-
LOG.info("[st] modèle
|
| 192 |
return _ST_MODEL
|
| 193 |
|
| 194 |
def _emb_st(texts: List[str]) -> np.ndarray:
|
|
@@ -202,6 +191,7 @@ def _emb_st(texts: List[str]) -> np.ndarray:
|
|
| 202 |
).astype("float32")
|
| 203 |
return vecs
|
| 204 |
|
|
|
|
| 205 |
def _get_hf_model():
|
| 206 |
global _HF_TOKENIZER, _HF_MODEL
|
| 207 |
if _HF_MODEL is None or _HF_TOKENIZER is None:
|
|
@@ -209,10 +199,10 @@ def _get_hf_model():
|
|
| 209 |
_HF_TOKENIZER = AutoTokenizer.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
|
| 210 |
_HF_MODEL = AutoModel.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
|
| 211 |
_HF_MODEL.eval()
|
| 212 |
-
LOG.info("[hf] modèle
|
| 213 |
return _HF_TOKENIZER, _HF_MODEL
|
| 214 |
|
| 215 |
-
def _mean_pool(last_hidden_state: np.ndarray, attention_mask: np.ndarray) -> np.ndarray:
|
| 216 |
mask = attention_mask[..., None].astype(last_hidden_state.dtype)
|
| 217 |
summed = (last_hidden_state * mask).sum(axis=1)
|
| 218 |
counts = mask.sum(axis=1).clip(min=1e-9)
|
|
@@ -221,28 +211,25 @@ def _mean_pool(last_hidden_state: np.ndarray, attention_mask: np.ndarray) -> np.
|
|
| 221 |
def _emb_hf(texts: List[str]) -> np.ndarray:
|
| 222 |
import torch
|
| 223 |
tok, mod = _get_hf_model()
|
| 224 |
-
all_vecs
|
| 225 |
bs = max(1, EMB_BATCH)
|
| 226 |
with torch.no_grad():
|
| 227 |
for i in range(0, len(texts), bs):
|
| 228 |
-
batch = texts[i:i
|
| 229 |
enc = tok(batch, padding=True, truncation=True, return_tensors="pt")
|
| 230 |
out = mod(**enc)
|
| 231 |
last = out.last_hidden_state # (b, t, h)
|
| 232 |
pooled = _mean_pool(last.numpy(), enc["attention_mask"].numpy())
|
| 233 |
all_vecs.append(pooled.astype("float32"))
|
| 234 |
-
|
|
|
|
| 235 |
|
| 236 |
-
#
|
| 237 |
-
|
| 238 |
-
# --------------------------------------------------------------------------- #
|
| 239 |
-
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]], store_text: bool = True) -> None:
|
| 240 |
os.makedirs(ds_dir, exist_ok=True)
|
| 241 |
data_path = os.path.join(ds_dir, "data.jsonl")
|
| 242 |
with open(data_path, "w", encoding="utf-8") as f:
|
| 243 |
for r in rows:
|
| 244 |
-
if not store_text:
|
| 245 |
-
r = {k: v for k, v in r.items() if k != "text"}
|
| 246 |
f.write(json.dumps(r, ensure_ascii=False) + "\n")
|
| 247 |
meta = {"format": "jsonl", "columns": ["path", "text", "chunk_id"], "count": len(rows)}
|
| 248 |
with open(os.path.join(ds_dir, "meta.json"), "w", encoding="utf-8") as f:
|
|
@@ -252,7 +239,7 @@ def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]:
|
|
| 252 |
data_path = os.path.join(ds_dir, "data.jsonl")
|
| 253 |
if not os.path.isfile(data_path):
|
| 254 |
return []
|
| 255 |
-
out
|
| 256 |
with open(data_path, "r", encoding="utf-8") as f:
|
| 257 |
for line in f:
|
| 258 |
try:
|
|
@@ -261,163 +248,118 @@ def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]:
|
|
| 261 |
continue
|
| 262 |
return out
|
| 263 |
|
| 264 |
-
def _save_faiss(fx_dir: str, xb: np.ndarray, meta: Dict[str, Any])
|
| 265 |
os.makedirs(fx_dir, exist_ok=True)
|
| 266 |
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 267 |
-
|
| 268 |
-
# ------------------- INDEX QUANTISÉ (IVF‑PQ) ------------------- #
|
| 269 |
-
quantizer = faiss.IndexFlatIP(xb.shape[1]) # inner‑product (cosine si normalisé)
|
| 270 |
-
index = faiss.IndexIVFPQ(quantizer, xb.shape[1], 100, 8, 8) # nlist=100, m=8, nbits=8
|
| 271 |
-
|
| 272 |
-
# entraînement sur un sous‑échantillon (max 10 k vecteurs)
|
| 273 |
-
rng = np.random.default_rng(0)
|
| 274 |
-
train = xb[rng.choice(xb.shape[0], min(10_000, xb.shape[0]), replace=False)]
|
| 275 |
-
index.train(train)
|
| 276 |
-
|
| 277 |
index.add(xb)
|
| 278 |
faiss.write_index(index, idx_path)
|
| 279 |
-
|
| 280 |
-
meta.update({"index_type": "IVF_PQ", "nlist": 100, "m": 8, "nbits": 8})
|
| 281 |
with open(os.path.join(fx_dir, "meta.json"), "w", encoding="utf-8") as f:
|
| 282 |
json.dump(meta, f, ensure_ascii=False, indent=2)
|
| 283 |
|
| 284 |
def _load_faiss(fx_dir: str) -> faiss.Index:
|
| 285 |
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 286 |
if not os.path.isfile(idx_path):
|
| 287 |
-
raise FileNotFoundError(f"FAISS index introuvable
|
| 288 |
-
|
| 289 |
-
return faiss.read_index(idx_path, faiss.IO_FLAG_MMAP)
|
| 290 |
|
| 291 |
def _tar_dir_to_bytes(dir_path: str) -> bytes:
|
| 292 |
bio = io.BytesIO()
|
| 293 |
-
with tarfile.open(fileobj=bio, mode="w:gz"
|
| 294 |
tar.add(dir_path, arcname=os.path.basename(dir_path))
|
| 295 |
bio.seek(0)
|
| 296 |
return bio.read()
|
| 297 |
|
| 298 |
-
#
|
| 299 |
-
#
|
| 300 |
-
#
|
| 301 |
EXECUTOR = ThreadPoolExecutor(max_workers=max(1, MAX_WORKERS))
|
| 302 |
-
LOG.info("ThreadPoolExecutor initialisé
|
| 303 |
-
|
| 304 |
-
def _do_index_job(
|
| 305 |
-
st: JobState,
|
| 306 |
-
files: List[Dict[str, str]],
|
| 307 |
-
chunk_size: int,
|
| 308 |
-
overlap: int,
|
| 309 |
-
batch_size: int,
|
| 310 |
-
store_text: bool,
|
| 311 |
-
) -> None:
|
| 312 |
"""
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
2️⃣ Embedding (dummy / st / hf)
|
| 316 |
-
3️⃣ Réduction de dimension (PCA) si besoin
|
| 317 |
-
4️⃣ Sauvegarde du dataset (texte optionnel)
|
| 318 |
-
5️⃣ Index FAISS quantisé + mmap
|
| 319 |
"""
|
| 320 |
try:
|
| 321 |
base, ds_dir, fx_dir = _proj_dirs(st.project_id)
|
| 322 |
|
| 323 |
-
#
|
| 324 |
_set_stage(st, "chunking")
|
| 325 |
rows: List[Dict[str, Any]] = []
|
| 326 |
st.total_files = len(files)
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
txt =
|
| 331 |
-
|
| 332 |
-
for
|
| 333 |
-
rows.append({"path": path, "text": ck, "chunk_id":
|
| 334 |
-
|
| 335 |
st.total_chunks = len(rows)
|
| 336 |
_add_msg(st, f"Total chunks = {st.total_chunks}")
|
| 337 |
|
| 338 |
-
#
|
| 339 |
_set_stage(st, "embedding")
|
| 340 |
texts = [r["text"] for r in rows]
|
| 341 |
-
|
| 342 |
if EMB_PROVIDER == "dummy":
|
| 343 |
xb = _emb_dummy(texts, dim=EMB_DIM)
|
|
|
|
| 344 |
elif EMB_PROVIDER == "st":
|
| 345 |
xb = _emb_st(texts)
|
|
|
|
| 346 |
else:
|
| 347 |
xb = _emb_hf(texts)
|
| 348 |
-
|
| 349 |
-
# ------------------- 3️⃣ Réduction PCA (si besoin) -------------------
|
| 350 |
-
if xb.shape[1] != EMB_DIM:
|
| 351 |
-
from sklearn.decomposition import PCA
|
| 352 |
-
pca = PCA(n_components=EMB_DIM, random_state=0)
|
| 353 |
-
xb = pca.fit_transform(xb).astype("float32")
|
| 354 |
-
LOG.info("Réduction PCA appliquée : %d → %d dimensions", xb.shape[1], EMB_DIM)
|
| 355 |
|
| 356 |
st.embedded = xb.shape[0]
|
| 357 |
-
_add_msg(st, f"Embeddings
|
|
|
|
| 358 |
|
| 359 |
-
#
|
| 360 |
-
_save_dataset(ds_dir, rows
|
| 361 |
-
_add_msg(st, f"Dataset sauvegardé dans {ds_dir}")
|
| 362 |
|
| 363 |
-
#
|
| 364 |
_set_stage(st, "indexing")
|
| 365 |
-
|
| 366 |
-
"dim": int(
|
| 367 |
"count": int(xb.shape[0]),
|
| 368 |
"provider": EMB_PROVIDER,
|
| 369 |
-
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None
|
| 370 |
}
|
| 371 |
-
_save_faiss(fx_dir, xb, meta)
|
| 372 |
st.indexed = int(xb.shape[0])
|
| 373 |
_add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}")
|
|
|
|
| 374 |
|
| 375 |
_set_stage(st, "done")
|
| 376 |
st.finished_at = time.time()
|
| 377 |
except Exception as e:
|
| 378 |
-
LOG.exception("Job %s
|
| 379 |
st.errors.append(str(e))
|
| 380 |
-
_add_msg(st, f"❌ Exception
|
| 381 |
st.stage = "failed"
|
| 382 |
st.finished_at = time.time()
|
| 383 |
|
| 384 |
-
|
| 385 |
-
def _submit_job(
|
| 386 |
-
project_id: str,
|
| 387 |
-
files: List[Dict[str, str]],
|
| 388 |
-
chunk_size: int,
|
| 389 |
-
overlap: int,
|
| 390 |
-
batch_size: int,
|
| 391 |
-
store_text: bool,
|
| 392 |
-
) -> str:
|
| 393 |
job_id = hashlib.sha1(f"{project_id}{time.time()}".encode()).hexdigest()[:12]
|
| 394 |
st = JobState(job_id=job_id, project_id=project_id, stage="pending", messages=[])
|
| 395 |
JOBS[job_id] = st
|
|
|
|
|
|
|
| 396 |
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
_do_index_job,
|
| 401 |
-
st,
|
| 402 |
-
files,
|
| 403 |
-
chunk_size,
|
| 404 |
-
overlap,
|
| 405 |
-
batch_size,
|
| 406 |
-
store_text,
|
| 407 |
-
)
|
| 408 |
-
st.stage = "queued"
|
| 409 |
return job_id
|
| 410 |
|
| 411 |
-
#
|
| 412 |
-
#
|
| 413 |
-
#
|
| 414 |
fastapi_app = FastAPI(title="remote-indexer-async", version="3.0.0")
|
| 415 |
fastapi_app.add_middleware(
|
| 416 |
CORSMiddleware,
|
| 417 |
-
allow_origins=["*"],
|
| 418 |
-
allow_credentials=True,
|
| 419 |
-
allow_methods=["*"],
|
| 420 |
-
allow_headers=["*"],
|
| 421 |
)
|
| 422 |
|
| 423 |
class FileItem(BaseModel):
|
|
@@ -430,11 +372,11 @@ class IndexRequest(BaseModel):
|
|
| 430 |
chunk_size: int = 200
|
| 431 |
overlap: int = 20
|
| 432 |
batch_size: int = 32
|
| 433 |
-
store_text: bool = True
|
| 434 |
|
| 435 |
@fastapi_app.get("/health")
|
| 436 |
def health():
|
| 437 |
-
|
| 438 |
"ok": True,
|
| 439 |
"service": "remote-indexer-async",
|
| 440 |
"provider": EMB_PROVIDER,
|
|
@@ -442,13 +384,18 @@ def health():
|
|
| 442 |
"cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"),
|
| 443 |
"workers": MAX_WORKERS,
|
| 444 |
"data_root": DATA_ROOT,
|
| 445 |
-
"emb_dim": EMB_DIM,
|
| 446 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
| 448 |
@fastapi_app.post("/index")
|
| 449 |
def index(req: IndexRequest):
|
| 450 |
"""
|
| 451 |
-
|
|
|
|
| 452 |
"""
|
| 453 |
try:
|
| 454 |
files = [fi.model_dump() for fi in req.files]
|
|
@@ -462,7 +409,7 @@ def index(req: IndexRequest):
|
|
| 462 |
)
|
| 463 |
return {"job_id": job_id}
|
| 464 |
except Exception as e:
|
| 465 |
-
LOG.exception("
|
| 466 |
raise HTTPException(status_code=500, detail=str(e))
|
| 467 |
|
| 468 |
@fastapi_app.get("/status/{job_id}")
|
|
@@ -481,16 +428,17 @@ class SearchRequest(BaseModel):
|
|
| 481 |
def search(req: SearchRequest):
|
| 482 |
base, ds_dir, fx_dir = _proj_dirs(req.project_id)
|
| 483 |
|
| 484 |
-
#
|
| 485 |
-
|
| 486 |
-
|
|
|
|
| 487 |
raise HTTPException(status_code=409, detail="Index non prêt (reviens plus tard)")
|
| 488 |
|
| 489 |
rows = _load_dataset(ds_dir)
|
| 490 |
if not rows:
|
| 491 |
raise HTTPException(status_code=404, detail="dataset introuvable")
|
| 492 |
|
| 493 |
-
# Embedding de la requête
|
| 494 |
if EMB_PROVIDER == "dummy":
|
| 495 |
q = _emb_dummy([req.query], dim=EMB_DIM)[0:1, :]
|
| 496 |
elif EMB_PROVIDER == "st":
|
|
@@ -498,13 +446,10 @@ def search(req: SearchRequest):
|
|
| 498 |
else:
|
| 499 |
q = _emb_hf([req.query])[0:1, :]
|
| 500 |
|
| 501 |
-
#
|
| 502 |
index = _load_faiss(fx_dir)
|
| 503 |
if index.d != q.shape[1]:
|
| 504 |
-
raise HTTPException(
|
| 505 |
-
status_code=500,
|
| 506 |
-
detail=f"dim incompatibles : index.d={index.d} vs query={q.shape[1]}",
|
| 507 |
-
)
|
| 508 |
scores, ids = index.search(q, int(max(1, req.k)))
|
| 509 |
ids = ids[0].tolist()
|
| 510 |
scores = scores[0].tolist()
|
|
@@ -517,73 +462,72 @@ def search(req: SearchRequest):
|
|
| 517 |
out.append({"path": r.get("path"), "text": r.get("text"), "score": float(sc)})
|
| 518 |
return {"results": out}
|
| 519 |
|
| 520 |
-
#
|
| 521 |
-
# EXPORT ARTIFACTS (gzip)
|
| 522 |
-
# --------------------------------------------------------------------------- #
|
| 523 |
@fastapi_app.get("/artifacts/{project_id}/dataset")
|
| 524 |
def download_dataset(project_id: str):
|
| 525 |
-
|
| 526 |
if not os.path.isdir(ds_dir):
|
| 527 |
raise HTTPException(status_code=404, detail="Dataset introuvable")
|
| 528 |
buf = _tar_dir_to_bytes(ds_dir)
|
| 529 |
-
|
| 530 |
-
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=
|
| 531 |
|
| 532 |
@fastapi_app.get("/artifacts/{project_id}/faiss")
|
| 533 |
def download_faiss(project_id: str):
|
| 534 |
-
|
| 535 |
if not os.path.isdir(fx_dir):
|
| 536 |
raise HTTPException(status_code=404, detail="FAISS introuvable")
|
| 537 |
buf = _tar_dir_to_bytes(fx_dir)
|
| 538 |
-
|
| 539 |
-
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=
|
| 540 |
|
| 541 |
-
#
|
| 542 |
-
#
|
| 543 |
-
#
|
| 544 |
def _ui_index(project_id: str, sample_text: str):
|
| 545 |
files = [{"path": "sample.txt", "text": sample_text}]
|
|
|
|
| 546 |
try:
|
| 547 |
req = IndexRequest(project_id=project_id, files=[FileItem(**f) for f in files])
|
| 548 |
-
except
|
| 549 |
-
return f"
|
| 550 |
try:
|
| 551 |
res = index(req)
|
| 552 |
-
return f"
|
| 553 |
except Exception as e:
|
| 554 |
-
return f"
|
| 555 |
|
| 556 |
def _ui_search(project_id: str, query: str, k: int):
|
| 557 |
try:
|
| 558 |
res = search(SearchRequest(project_id=project_id, query=query, k=int(k)))
|
| 559 |
return json.dumps(res, ensure_ascii=False, indent=2)
|
| 560 |
except Exception as e:
|
| 561 |
-
return f"
|
| 562 |
-
|
| 563 |
-
with gr.Blocks(title="Remote Indexer (Async
|
| 564 |
-
gr.Markdown("## Remote Indexer — Async (
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
|
|
|
|
|
|
| 573 |
q = gr.Textbox(label="Query", value="alpha")
|
| 574 |
-
k = gr.Slider(1, 20, value=5, step=1, label="
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
|
| 579 |
-
# Monte l’UI Gradio sur le même serveur FastAPI
|
| 580 |
fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui")
|
| 581 |
|
| 582 |
-
#
|
| 583 |
-
#
|
| 584 |
-
#
|
| 585 |
if __name__ == "__main__":
|
| 586 |
import uvicorn
|
| 587 |
-
|
| 588 |
-
LOG.info("Démarrage Uvicorn – port %s – UI disponible à /ui", PORT)
|
| 589 |
uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from __future__ import annotations
|
| 3 |
|
| 4 |
import os
|
| 5 |
import io
|
| 6 |
import json
|
| 7 |
import time
|
|
|
|
|
|
|
| 8 |
import tarfile
|
| 9 |
+
import logging
|
| 10 |
+
import hashlib
|
| 11 |
+
from typing import Dict, Any, List, Tuple, Optional
|
|
|
|
| 12 |
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
|
| 14 |
import numpy as np
|
|
|
|
| 20 |
|
| 21 |
import gradio as gr
|
| 22 |
|
| 23 |
+
# =============================================================================
|
| 24 |
+
# LOGGING
|
| 25 |
+
# =============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
LOG = logging.getLogger("remote-indexer-async")
|
| 27 |
if not LOG.handlers:
|
| 28 |
h = logging.StreamHandler()
|
|
|
|
| 37 |
DBG.addHandler(hd)
|
| 38 |
DBG.setLevel(logging.DEBUG)
|
| 39 |
|
| 40 |
+
# =============================================================================
|
| 41 |
+
# CONFIG (via ENV)
|
| 42 |
+
# =============================================================================
|
| 43 |
PORT = int(os.getenv("PORT", "7860"))
|
| 44 |
+
DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data") # stockage interne du Space (volatile en Free)
|
| 45 |
os.makedirs(DATA_ROOT, exist_ok=True)
|
| 46 |
|
| 47 |
+
# Provider d'embeddings:
|
| 48 |
+
# - "dummy" : vecteurs aléatoires déterministes (très rapide)
|
| 49 |
+
# - "st" : Sentence-Transformers (CPU-friendly)
|
| 50 |
+
# - "hf" : Transformers pur (AutoModel/AutoTokenizer)
|
| 51 |
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "dummy").strip().lower()
|
| 52 |
EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/all-mpnet-base-v2").strip()
|
| 53 |
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))
|
| 54 |
+
EMB_DIM = int(os.getenv("EMB_DIM", "128")) # utilisé pour dummy
|
| 55 |
|
| 56 |
+
# Taille du pool de workers (asynchrone)
|
| 57 |
MAX_WORKERS = int(os.getenv("MAX_WORKERS", "1"))
|
| 58 |
|
| 59 |
+
# =============================================================================
|
| 60 |
+
# CACHE DIRECTORIES (évite PermissionError: '/.cache')
|
| 61 |
+
# =============================================================================
|
| 62 |
def _setup_cache_dirs() -> Dict[str, str]:
|
| 63 |
os.environ.setdefault("HOME", "/home/user")
|
| 64 |
+
|
| 65 |
CACHE_ROOT = os.getenv("CACHE_ROOT", "/tmp/.cache").rstrip("/")
|
| 66 |
paths = {
|
| 67 |
"root": CACHE_ROOT,
|
|
|
|
| 87 |
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
|
| 88 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 89 |
|
| 90 |
+
LOG.info("Caches configurés: %s", json.dumps(paths, indent=2))
|
| 91 |
return paths
|
| 92 |
|
|
|
|
| 93 |
CACHE_PATHS = _setup_cache_dirs()
|
| 94 |
|
| 95 |
+
# Cache global lazy (pour les modèles)
|
| 96 |
+
_ST_MODEL = None
|
| 97 |
+
_HF_TOKENIZER = None
|
| 98 |
+
_HF_MODEL = None
|
| 99 |
+
|
| 100 |
+
# =============================================================================
|
| 101 |
+
# JOB STATE
|
| 102 |
+
# =============================================================================
|
| 103 |
+
class JobState(BaseModel):
|
| 104 |
+
job_id: str
|
| 105 |
+
project_id: str
|
| 106 |
+
stage: str = "pending" # pending -> chunking -> embedding -> indexing -> done/failed
|
| 107 |
+
total_files: int = 0
|
| 108 |
+
total_chunks: int = 0
|
| 109 |
+
embedded: int = 0
|
| 110 |
+
indexed: int = 0
|
| 111 |
+
errors: List[str] = []
|
| 112 |
+
messages: List[str] = []
|
| 113 |
+
started_at: float = time.time()
|
| 114 |
+
finished_at: Optional[float] = None
|
| 115 |
|
|
|
|
|
|
|
|
|
|
| 116 |
JOBS: Dict[str, JobState] = {}
|
| 117 |
|
| 118 |
def _now() -> str:
|
|
|
|
| 126 |
os.makedirs(fx_dir, exist_ok=True)
|
| 127 |
return base, ds_dir, fx_dir
|
| 128 |
|
| 129 |
+
def _add_msg(st: JobState, msg: str):
|
| 130 |
st.messages.append(f"[{_now()}] {msg}")
|
| 131 |
LOG.info("[%s] %s", st.job_id, msg)
|
| 132 |
DBG.debug("[%s] %s", st.job_id, msg)
|
| 133 |
|
| 134 |
+
def _set_stage(st: JobState, stage: str):
|
| 135 |
st.stage = stage
|
| 136 |
_add_msg(st, f"stage={stage}")
|
| 137 |
|
| 138 |
+
# =============================================================================
|
| 139 |
+
# UTILS
|
| 140 |
+
# =============================================================================
|
| 141 |
def _chunk_text(text: str, size: int = 200, overlap: int = 20) -> List[str]:
|
| 142 |
text = (text or "").replace("\r\n", "\n")
|
| 143 |
tokens = list(text)
|
|
|
|
| 161 |
n = np.linalg.norm(x, axis=1, keepdims=True) + 1e-12
|
| 162 |
return x / n
|
| 163 |
|
| 164 |
+
# ----------------------- PROVIDER: DUMMY --------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
|
| 166 |
vecs = np.zeros((len(texts), dim), dtype="float32")
|
| 167 |
for i, t in enumerate(texts):
|
|
|
|
| 171 |
vecs[i] = v / (np.linalg.norm(v) + 1e-9)
|
| 172 |
return vecs
|
| 173 |
|
| 174 |
+
# ----------------- PROVIDER: Sentence-Transformers ----------------------------
|
| 175 |
def _get_st_model():
|
| 176 |
global _ST_MODEL
|
| 177 |
if _ST_MODEL is None:
|
| 178 |
from sentence_transformers import SentenceTransformer
|
| 179 |
_ST_MODEL = SentenceTransformer(EMB_MODEL, cache_folder=CACHE_PATHS["st"])
|
| 180 |
+
LOG.info("[st] modèle chargé: %s (cache=%s)", EMB_MODEL, CACHE_PATHS["st"])
|
| 181 |
return _ST_MODEL
|
| 182 |
|
| 183 |
def _emb_st(texts: List[str]) -> np.ndarray:
|
|
|
|
| 191 |
).astype("float32")
|
| 192 |
return vecs
|
| 193 |
|
| 194 |
+
# ----------------------- PROVIDER: Transformers (HF) --------------------------
|
| 195 |
def _get_hf_model():
|
| 196 |
global _HF_TOKENIZER, _HF_MODEL
|
| 197 |
if _HF_MODEL is None or _HF_TOKENIZER is None:
|
|
|
|
| 199 |
_HF_TOKENIZER = AutoTokenizer.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
|
| 200 |
_HF_MODEL = AutoModel.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
|
| 201 |
_HF_MODEL.eval()
|
| 202 |
+
LOG.info("[hf] modèle chargé: %s (cache=%s)", EMB_MODEL, CACHE_PATHS["hf_tf"])
|
| 203 |
return _HF_TOKENIZER, _HF_MODEL
|
| 204 |
|
| 205 |
+
def _mean_pool(last_hidden_state: "np.ndarray", attention_mask: "np.ndarray") -> "np.ndarray":
|
| 206 |
mask = attention_mask[..., None].astype(last_hidden_state.dtype)
|
| 207 |
summed = (last_hidden_state * mask).sum(axis=1)
|
| 208 |
counts = mask.sum(axis=1).clip(min=1e-9)
|
|
|
|
| 211 |
def _emb_hf(texts: List[str]) -> np.ndarray:
|
| 212 |
import torch
|
| 213 |
tok, mod = _get_hf_model()
|
| 214 |
+
all_vecs = []
|
| 215 |
bs = max(1, EMB_BATCH)
|
| 216 |
with torch.no_grad():
|
| 217 |
for i in range(0, len(texts), bs):
|
| 218 |
+
batch = texts[i:i+bs]
|
| 219 |
enc = tok(batch, padding=True, truncation=True, return_tensors="pt")
|
| 220 |
out = mod(**enc)
|
| 221 |
last = out.last_hidden_state # (b, t, h)
|
| 222 |
pooled = _mean_pool(last.numpy(), enc["attention_mask"].numpy())
|
| 223 |
all_vecs.append(pooled.astype("float32"))
|
| 224 |
+
vecs = np.concatenate(all_vecs, axis=0)
|
| 225 |
+
return _l2_normalize(vecs)
|
| 226 |
|
| 227 |
+
# ---------------------------- DATASET / FAISS ---------------------------------
|
| 228 |
+
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]]):
|
|
|
|
|
|
|
| 229 |
os.makedirs(ds_dir, exist_ok=True)
|
| 230 |
data_path = os.path.join(ds_dir, "data.jsonl")
|
| 231 |
with open(data_path, "w", encoding="utf-8") as f:
|
| 232 |
for r in rows:
|
|
|
|
|
|
|
| 233 |
f.write(json.dumps(r, ensure_ascii=False) + "\n")
|
| 234 |
meta = {"format": "jsonl", "columns": ["path", "text", "chunk_id"], "count": len(rows)}
|
| 235 |
with open(os.path.join(ds_dir, "meta.json"), "w", encoding="utf-8") as f:
|
|
|
|
| 239 |
data_path = os.path.join(ds_dir, "data.jsonl")
|
| 240 |
if not os.path.isfile(data_path):
|
| 241 |
return []
|
| 242 |
+
out = []
|
| 243 |
with open(data_path, "r", encoding="utf-8") as f:
|
| 244 |
for line in f:
|
| 245 |
try:
|
|
|
|
| 248 |
continue
|
| 249 |
return out
|
| 250 |
|
| 251 |
+
def _save_faiss(fx_dir: str, xb: np.ndarray, meta: Dict[str, Any]):
|
| 252 |
os.makedirs(fx_dir, exist_ok=True)
|
| 253 |
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 254 |
+
index = faiss.IndexFlatIP(xb.shape[1]) # cosine ~ inner product si embeddings normalisés
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
index.add(xb)
|
| 256 |
faiss.write_index(index, idx_path)
|
|
|
|
|
|
|
| 257 |
with open(os.path.join(fx_dir, "meta.json"), "w", encoding="utf-8") as f:
|
| 258 |
json.dump(meta, f, ensure_ascii=False, indent=2)
|
| 259 |
|
| 260 |
def _load_faiss(fx_dir: str) -> faiss.Index:
|
| 261 |
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 262 |
if not os.path.isfile(idx_path):
|
| 263 |
+
raise FileNotFoundError(f"FAISS index introuvable: {idx_path}")
|
| 264 |
+
return faiss.read_index(idx_path)
|
|
|
|
| 265 |
|
| 266 |
def _tar_dir_to_bytes(dir_path: str) -> bytes:
|
| 267 |
bio = io.BytesIO()
|
| 268 |
+
with tarfile.open(fileobj=bio, mode="w:gz") as tar:
|
| 269 |
tar.add(dir_path, arcname=os.path.basename(dir_path))
|
| 270 |
bio.seek(0)
|
| 271 |
return bio.read()
|
| 272 |
|
| 273 |
+
# =============================================================================
|
| 274 |
+
# WORKER POOL (asynchrone)
|
| 275 |
+
# =============================================================================
|
| 276 |
EXECUTOR = ThreadPoolExecutor(max_workers=max(1, MAX_WORKERS))
|
| 277 |
+
LOG.info("ThreadPoolExecutor initialisé : max_workers=%s", MAX_WORKERS)
|
| 278 |
+
|
| 279 |
+
def _do_index_job(st: JobState, files: List[Dict[str, str]], chunk_size: int, overlap: int, batch_size: int, store_text: bool) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
"""
|
| 281 |
+
Tâche lourde lancée dans un worker thread.
|
| 282 |
+
Met à jour l'état 'st' tout au long du pipeline.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
"""
|
| 284 |
try:
|
| 285 |
base, ds_dir, fx_dir = _proj_dirs(st.project_id)
|
| 286 |
|
| 287 |
+
# 1) Chunking
|
| 288 |
_set_stage(st, "chunking")
|
| 289 |
rows: List[Dict[str, Any]] = []
|
| 290 |
st.total_files = len(files)
|
| 291 |
+
for it in files:
|
| 292 |
+
path = (it.get("path") or "unknown").strip()
|
| 293 |
+
txt = it.get("text") or ""
|
| 294 |
+
chks = _chunk_text(txt, size=int(chunk_size), overlap=int(overlap))
|
| 295 |
+
_add_msg(st, f"{path}: len(text)={len(txt)} chunks={len(chks)}")
|
| 296 |
+
for ci, ck in enumerate(chks):
|
| 297 |
+
rows.append({"path": path, "text": ck, "chunk_id": ci})
|
|
|
|
| 298 |
st.total_chunks = len(rows)
|
| 299 |
_add_msg(st, f"Total chunks = {st.total_chunks}")
|
| 300 |
|
| 301 |
+
# 2) Embedding
|
| 302 |
_set_stage(st, "embedding")
|
| 303 |
texts = [r["text"] for r in rows]
|
|
|
|
| 304 |
if EMB_PROVIDER == "dummy":
|
| 305 |
xb = _emb_dummy(texts, dim=EMB_DIM)
|
| 306 |
+
dim = xb.shape[1]
|
| 307 |
elif EMB_PROVIDER == "st":
|
| 308 |
xb = _emb_st(texts)
|
| 309 |
+
dim = xb.shape[1]
|
| 310 |
else:
|
| 311 |
xb = _emb_hf(texts)
|
| 312 |
+
dim = xb.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
st.embedded = xb.shape[0]
|
| 315 |
+
_add_msg(st, f"Embeddings {st.embedded}/{st.total_chunks}")
|
| 316 |
+
_add_msg(st, f"Embeddings dim={dim}")
|
| 317 |
|
| 318 |
+
# 3) Sauvegarde dataset (texte)
|
| 319 |
+
_save_dataset(ds_dir, rows)
|
| 320 |
+
_add_msg(st, f"Dataset (sans index) sauvegardé dans {ds_dir}")
|
| 321 |
|
| 322 |
+
# 4) FAISS
|
| 323 |
_set_stage(st, "indexing")
|
| 324 |
+
faiss_meta = {
|
| 325 |
+
"dim": int(dim),
|
| 326 |
"count": int(xb.shape[0]),
|
| 327 |
"provider": EMB_PROVIDER,
|
| 328 |
+
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None
|
| 329 |
}
|
| 330 |
+
_save_faiss(fx_dir, xb, meta=faiss_meta)
|
| 331 |
st.indexed = int(xb.shape[0])
|
| 332 |
_add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}")
|
| 333 |
+
_add_msg(st, f"OK — dataset+index prêts (projet={st.project_id})")
|
| 334 |
|
| 335 |
_set_stage(st, "done")
|
| 336 |
st.finished_at = time.time()
|
| 337 |
except Exception as e:
|
| 338 |
+
LOG.exception("Job %s failed", st.job_id)
|
| 339 |
st.errors.append(str(e))
|
| 340 |
+
_add_msg(st, f"❌ Exception: {e}")
|
| 341 |
st.stage = "failed"
|
| 342 |
st.finished_at = time.time()
|
| 343 |
|
| 344 |
+
def _submit_job(project_id: str, files: List[Dict[str, str]], chunk_size: int, overlap: int, batch_size: int, store_text: bool) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
job_id = hashlib.sha1(f"{project_id}{time.time()}".encode()).hexdigest()[:12]
|
| 346 |
st = JobState(job_id=job_id, project_id=project_id, stage="pending", messages=[])
|
| 347 |
JOBS[job_id] = st
|
| 348 |
+
_add_msg(st, f"Job {job_id} créé pour project {project_id}")
|
| 349 |
+
_add_msg(st, f"Index start project={project_id} files={len(files)} chunk_size={chunk_size} overlap={overlap} batch_size={batch_size} store_text={store_text} provider={EMB_PROVIDER} model={EMB_MODEL if EMB_PROVIDER!='dummy' else '-'}")
|
| 350 |
|
| 351 |
+
# Soumission au pool (retour immédiat)
|
| 352 |
+
EXECUTOR.submit(_do_index_job, st, files, chunk_size, overlap, batch_size, store_text)
|
| 353 |
+
_set_stage(st, "queued")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
return job_id
|
| 355 |
|
| 356 |
+
# =============================================================================
|
| 357 |
+
# FASTAPI
|
| 358 |
+
# =============================================================================
|
| 359 |
fastapi_app = FastAPI(title="remote-indexer-async", version="3.0.0")
|
| 360 |
fastapi_app.add_middleware(
|
| 361 |
CORSMiddleware,
|
| 362 |
+
allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"],
|
|
|
|
|
|
|
|
|
|
| 363 |
)
|
| 364 |
|
| 365 |
class FileItem(BaseModel):
|
|
|
|
| 372 |
chunk_size: int = 200
|
| 373 |
overlap: int = 20
|
| 374 |
batch_size: int = 32
|
| 375 |
+
store_text: bool = True
|
| 376 |
|
| 377 |
@fastapi_app.get("/health")
|
| 378 |
def health():
|
| 379 |
+
info = {
|
| 380 |
"ok": True,
|
| 381 |
"service": "remote-indexer-async",
|
| 382 |
"provider": EMB_PROVIDER,
|
|
|
|
| 384 |
"cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"),
|
| 385 |
"workers": MAX_WORKERS,
|
| 386 |
"data_root": DATA_ROOT,
|
|
|
|
| 387 |
}
|
| 388 |
+
return info
|
| 389 |
+
|
| 390 |
+
@fastapi_app.get("/")
|
| 391 |
+
def root_redirect():
|
| 392 |
+
return {"ok": True, "service": "remote-indexer-async", "ui": "/ui"}
|
| 393 |
|
| 394 |
@fastapi_app.post("/index")
|
| 395 |
def index(req: IndexRequest):
|
| 396 |
"""
|
| 397 |
+
ASYNCHRONE : retourne immédiatement un job_id.
|
| 398 |
+
Le traitement est effectué en arrière-plan par le pool de threads.
|
| 399 |
"""
|
| 400 |
try:
|
| 401 |
files = [fi.model_dump() for fi in req.files]
|
|
|
|
| 409 |
)
|
| 410 |
return {"job_id": job_id}
|
| 411 |
except Exception as e:
|
| 412 |
+
LOG.exception("index failed (submit)")
|
| 413 |
raise HTTPException(status_code=500, detail=str(e))
|
| 414 |
|
| 415 |
@fastapi_app.get("/status/{job_id}")
|
|
|
|
| 428 |
def search(req: SearchRequest):
|
| 429 |
base, ds_dir, fx_dir = _proj_dirs(req.project_id)
|
| 430 |
|
| 431 |
+
# Si l'index n'existe pas encore, on répond 409 (conflit / pas prêt)
|
| 432 |
+
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 433 |
+
ds_path = os.path.join(ds_dir, "data.jsonl")
|
| 434 |
+
if not (os.path.isfile(idx_path) and os.path.isfile(ds_path)):
|
| 435 |
raise HTTPException(status_code=409, detail="Index non prêt (reviens plus tard)")
|
| 436 |
|
| 437 |
rows = _load_dataset(ds_dir)
|
| 438 |
if not rows:
|
| 439 |
raise HTTPException(status_code=404, detail="dataset introuvable")
|
| 440 |
|
| 441 |
+
# Embedding de la requête avec le MÊME provider
|
| 442 |
if EMB_PROVIDER == "dummy":
|
| 443 |
q = _emb_dummy([req.query], dim=EMB_DIM)[0:1, :]
|
| 444 |
elif EMB_PROVIDER == "st":
|
|
|
|
| 446 |
else:
|
| 447 |
q = _emb_hf([req.query])[0:1, :]
|
| 448 |
|
| 449 |
+
# FAISS
|
| 450 |
index = _load_faiss(fx_dir)
|
| 451 |
if index.d != q.shape[1]:
|
| 452 |
+
raise HTTPException(status_code=500, detail=f"dim incompatibles: index.d={index.d} vs query={q.shape[1]}")
|
|
|
|
|
|
|
|
|
|
| 453 |
scores, ids = index.search(q, int(max(1, req.k)))
|
| 454 |
ids = ids[0].tolist()
|
| 455 |
scores = scores[0].tolist()
|
|
|
|
| 462 |
out.append({"path": r.get("path"), "text": r.get("text"), "score": float(sc)})
|
| 463 |
return {"results": out}
|
| 464 |
|
| 465 |
+
# ----------- ARTIFACTS EXPORT -----------
|
|
|
|
|
|
|
| 466 |
@fastapi_app.get("/artifacts/{project_id}/dataset")
|
| 467 |
def download_dataset(project_id: str):
|
| 468 |
+
base, ds_dir, _ = _proj_dirs(project_id)
|
| 469 |
if not os.path.isdir(ds_dir):
|
| 470 |
raise HTTPException(status_code=404, detail="Dataset introuvable")
|
| 471 |
buf = _tar_dir_to_bytes(ds_dir)
|
| 472 |
+
headers = {"Content-Disposition": f'attachment; filename="{project_id}_dataset.tgz"'}
|
| 473 |
+
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=headers)
|
| 474 |
|
| 475 |
@fastapi_app.get("/artifacts/{project_id}/faiss")
|
| 476 |
def download_faiss(project_id: str):
|
| 477 |
+
base, _, fx_dir = _proj_dirs(project_id)
|
| 478 |
if not os.path.isdir(fx_dir):
|
| 479 |
raise HTTPException(status_code=404, detail="FAISS introuvable")
|
| 480 |
buf = _tar_dir_to_bytes(fx_dir)
|
| 481 |
+
headers = {"Content-Disposition": f'attachment; filename="{project_id}_faiss.tgz"'}
|
| 482 |
+
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=headers)
|
| 483 |
|
| 484 |
+
# =============================================================================
|
| 485 |
+
# GRADIO UI (facultatif de test)
|
| 486 |
+
# =============================================================================
|
| 487 |
def _ui_index(project_id: str, sample_text: str):
|
| 488 |
files = [{"path": "sample.txt", "text": sample_text}]
|
| 489 |
+
from pydantic import ValidationError
|
| 490 |
try:
|
| 491 |
req = IndexRequest(project_id=project_id, files=[FileItem(**f) for f in files])
|
| 492 |
+
except ValidationError as e:
|
| 493 |
+
return f"Erreur: {e}"
|
| 494 |
try:
|
| 495 |
res = index(req)
|
| 496 |
+
return f"Job lancé: {res['job_id']}"
|
| 497 |
except Exception as e:
|
| 498 |
+
return f"Erreur index: {e}"
|
| 499 |
|
| 500 |
def _ui_search(project_id: str, query: str, k: int):
|
| 501 |
try:
|
| 502 |
res = search(SearchRequest(project_id=project_id, query=query, k=int(k)))
|
| 503 |
return json.dumps(res, ensure_ascii=False, indent=2)
|
| 504 |
except Exception as e:
|
| 505 |
+
return f"Erreur search: {e}"
|
| 506 |
+
|
| 507 |
+
with gr.Blocks(title="Remote Indexer (Async FAISS)", analytics_enabled=False) as ui:
|
| 508 |
+
gr.Markdown("## Remote Indexer — **Async** (API: `/index`, `/status/{job}`, `/search`, `/artifacts/...`).")
|
| 509 |
+
gr.Markdown(f"**Provider**: `{EMB_PROVIDER}` — **Model**: `{EMB_MODEL if EMB_PROVIDER!='dummy' else '-'}` — **Cache**: `{os.getenv('CACHE_ROOT', '/tmp/.cache')}` — **Workers**: `{MAX_WORKERS}`")
|
| 510 |
+
with gr.Tab("Index"):
|
| 511 |
+
pid = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 512 |
+
sample = gr.Textbox(label="Texte d’exemple", value="Alpha bravo charlie delta echo foxtrot.", lines=4)
|
| 513 |
+
btn = gr.Button("Lancer index (sample)")
|
| 514 |
+
out = gr.Textbox(label="Résultat")
|
| 515 |
+
btn.click(_ui_index, inputs=[pid, sample], outputs=[out])
|
| 516 |
+
|
| 517 |
+
with gr.Tab("Search"):
|
| 518 |
+
pid2 = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 519 |
q = gr.Textbox(label="Query", value="alpha")
|
| 520 |
+
k = gr.Slider(1, 20, value=5, step=1, label="k")
|
| 521 |
+
btn2 = gr.Button("Rechercher")
|
| 522 |
+
out2 = gr.Code(label="Résultats")
|
| 523 |
+
btn2.click(_ui_search, inputs=[pid2, q, k], outputs=[out2])
|
| 524 |
|
|
|
|
| 525 |
fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui")
|
| 526 |
|
| 527 |
+
# =============================================================================
|
| 528 |
+
# MAIN
|
| 529 |
+
# =============================================================================
|
| 530 |
if __name__ == "__main__":
|
| 531 |
import uvicorn
|
| 532 |
+
LOG.info("Démarrage Uvicorn sur 0.0.0.0:%s (UI_PATH=/ui) — async index", PORT)
|
|
|
|
| 533 |
uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)
|