Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,29 +1,30 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
-
HF Space
|
|
|
|
| 4 |
|
| 5 |
Endpoints:
|
| 6 |
-
- GET /
|
| 7 |
-
- GET /ui
|
| 8 |
-
- GET /health
|
| 9 |
-
- GET /api
|
| 10 |
-
- GET /debug/env
|
| 11 |
-
- POST /wipe?project_id=XXX
|
| 12 |
-
- POST /index
|
| 13 |
-
- GET /status/{job_id}
|
| 14 |
-
- GET /collections/{
|
| 15 |
-
- POST /query
|
| 16 |
|
| 17 |
ENV:
|
| 18 |
-
- QDRANT_URL, QDRANT_API_KEY
|
| 19 |
-
- COLLECTION_PREFIX
|
| 20 |
-
- EMB_PROVIDER
|
| 21 |
-
- HF_EMBED_MODEL
|
| 22 |
-
- HUGGINGFACEHUB_API_TOKEN
|
| 23 |
-
- EMB_FALLBACK_TO_DUMMY
|
| 24 |
-
- LOG_LEVEL
|
| 25 |
-
-
|
| 26 |
-
-
|
| 27 |
"""
|
| 28 |
|
| 29 |
from __future__ import annotations
|
|
@@ -32,6 +33,7 @@ import time
|
|
| 32 |
import uuid
|
| 33 |
import hashlib
|
| 34 |
import logging
|
|
|
|
| 35 |
import asyncio
|
| 36 |
from typing import List, Dict, Any, Optional, Tuple
|
| 37 |
|
|
@@ -45,7 +47,7 @@ from fastapi.responses import RedirectResponse
|
|
| 45 |
import gradio as gr
|
| 46 |
|
| 47 |
# ------------------------------------------------------------------------------
|
| 48 |
-
#
|
| 49 |
# ------------------------------------------------------------------------------
|
| 50 |
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG").upper()
|
| 51 |
logging.basicConfig(
|
|
@@ -58,26 +60,20 @@ QDRANT_URL = os.getenv("QDRANT_URL", "").rstrip("/")
|
|
| 58 |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "")
|
| 59 |
COLLECTION_PREFIX = os.getenv("COLLECTION_PREFIX", "proj_").strip() or "proj_"
|
| 60 |
|
| 61 |
-
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "hf").lower()
|
| 62 |
HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3")
|
| 63 |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
| 64 |
-
|
| 65 |
EMB_FALLBACK_TO_DUMMY = os.getenv("EMB_FALLBACK_TO_DUMMY", "false").lower() in ("1","true","yes","on")
|
| 66 |
|
| 67 |
-
UI_PATH = os.getenv("UI_PATH", "/ui")
|
| 68 |
|
| 69 |
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 70 |
LOG.warning("QDRANT_URL / QDRANT_API_KEY non fournis : l'upsert échouera.")
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
LOG.warning(
|
| 74 |
-
"EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN. "
|
| 75 |
-
"→ soit définis le token, soit mets EMB_PROVIDER=dummy, "
|
| 76 |
-
"soit active EMB_FALLBACK_TO_DUMMY=true."
|
| 77 |
-
)
|
| 78 |
|
| 79 |
# ------------------------------------------------------------------------------
|
| 80 |
-
#
|
| 81 |
# ------------------------------------------------------------------------------
|
| 82 |
class FileItem(BaseModel):
|
| 83 |
path: str
|
|
@@ -96,9 +92,6 @@ class QueryRequest(BaseModel):
|
|
| 96 |
text: str
|
| 97 |
top_k: int = Field(5, ge=1, le=100)
|
| 98 |
|
| 99 |
-
# ------------------------------------------------------------------------------
|
| 100 |
-
# Job store (en mémoire)
|
| 101 |
-
# ------------------------------------------------------------------------------
|
| 102 |
class JobState(BaseModel):
|
| 103 |
job_id: str
|
| 104 |
project_id: str
|
|
@@ -121,7 +114,7 @@ class JobState(BaseModel):
|
|
| 121 |
JOBS: Dict[str, JobState] = {}
|
| 122 |
|
| 123 |
# ------------------------------------------------------------------------------
|
| 124 |
-
#
|
| 125 |
# ------------------------------------------------------------------------------
|
| 126 |
def hash8(s: str) -> str:
|
| 127 |
return hashlib.sha256(s.encode("utf-8")).hexdigest()[:16]
|
|
@@ -134,7 +127,6 @@ def l2_normalize(vec: List[float]) -> List[float]:
|
|
| 134 |
return arr.astype(np.float32).tolist()
|
| 135 |
|
| 136 |
def flatten_any(x: Any) -> List[float]:
|
| 137 |
-
"""Aplatis potentiels [[...]] ou [[[...]]] en 1D."""
|
| 138 |
if isinstance(x, (list, tuple)):
|
| 139 |
if len(x) > 0 and isinstance(x[0], (list, tuple)):
|
| 140 |
return flatten_any(x[0])
|
|
@@ -142,7 +134,6 @@ def flatten_any(x: Any) -> List[float]:
|
|
| 142 |
raise ValueError("Embedding vector mal formé")
|
| 143 |
|
| 144 |
def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int, str]]:
|
| 145 |
-
"""Retourne [(start, end, chunk)] et ignore les fragments < 30 chars."""
|
| 146 |
text = text or ""
|
| 147 |
if not text.strip():
|
| 148 |
return []
|
|
@@ -160,10 +151,9 @@ def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int,
|
|
| 160 |
return res
|
| 161 |
|
| 162 |
# ------------------------------------------------------------------------------
|
| 163 |
-
# Qdrant
|
| 164 |
# ------------------------------------------------------------------------------
|
| 165 |
async def ensure_collection(client: httpx.AsyncClient, coll: str, vector_size: int) -> None:
|
| 166 |
-
"""Crée la collection Qdrant (distance=Cosine), ou la recrée si dim mismatch."""
|
| 167 |
url = f"{QDRANT_URL}/collections/{coll}"
|
| 168 |
r = await client.get(url, headers={"api-key": QDRANT_API_KEY}, timeout=20)
|
| 169 |
recreate = False
|
|
@@ -201,24 +191,15 @@ async def qdrant_count(client: httpx.AsyncClient, coll: str) -> int:
|
|
| 201 |
|
| 202 |
async def qdrant_search(client: httpx.AsyncClient, coll: str, vector: List[float], limit: int = 5) -> Dict[str, Any]:
|
| 203 |
url = f"{QDRANT_URL}/collections/{coll}/points/search"
|
| 204 |
-
r = await client.post(
|
| 205 |
-
url,
|
| 206 |
-
headers={"api-key": QDRANT_API_KEY},
|
| 207 |
-
json={"vector": vector, "limit": limit, "with_payload": True},
|
| 208 |
-
timeout=30,
|
| 209 |
-
)
|
| 210 |
if r.status_code != 200:
|
| 211 |
raise HTTPException(status_code=500, detail=f"Qdrant search échoué: {r.text}")
|
| 212 |
return r.json()
|
| 213 |
|
| 214 |
# ------------------------------------------------------------------------------
|
| 215 |
-
# Embeddings
|
| 216 |
# ------------------------------------------------------------------------------
|
| 217 |
def _maybe_prefix_for_model(texts: List[str], model_name: str) -> List[str]:
|
| 218 |
-
"""
|
| 219 |
-
E5 attend en pratique des préfixes 'query: ' (ou 'passage: ' / 'document: ').
|
| 220 |
-
On préfixe automatiquement si le modèle contient 'e5'.
|
| 221 |
-
"""
|
| 222 |
m = (model_name or "").lower()
|
| 223 |
if "e5" in m:
|
| 224 |
return [("query: " + t) for t in texts]
|
|
@@ -270,7 +251,7 @@ async def embed_texts(client: httpx.AsyncClient, texts: List[str]) -> List[List[
|
|
| 270 |
return embed_dummy(texts, dim=128)
|
| 271 |
|
| 272 |
# ------------------------------------------------------------------------------
|
| 273 |
-
#
|
| 274 |
# ------------------------------------------------------------------------------
|
| 275 |
async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
| 276 |
try:
|
|
@@ -282,12 +263,6 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 282 |
f"provider={EMB_PROVIDER} model={HF_EMBED_MODEL}"
|
| 283 |
)
|
| 284 |
|
| 285 |
-
# Dédup global par hash du texte de fichier
|
| 286 |
-
file_hashes = [hash8(f.text) for f in req.files]
|
| 287 |
-
uniq = len(set(file_hashes))
|
| 288 |
-
if uniq != len(file_hashes):
|
| 289 |
-
job.log(f"Attention: {len(file_hashes)-uniq} fichier(s) ont un texte identique (hash dupliqué).")
|
| 290 |
-
|
| 291 |
# Chunking
|
| 292 |
records: List[Dict[str, Any]] = []
|
| 293 |
for f in req.files:
|
|
@@ -301,7 +276,6 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 301 |
records.append({"payload": payload, "raw": ch})
|
| 302 |
job.total_chunks = len(records)
|
| 303 |
job.log(f"Total chunks = {job.total_chunks}")
|
| 304 |
-
|
| 305 |
if job.total_chunks == 0:
|
| 306 |
job.stage = "failed"
|
| 307 |
job.errors.append("Aucun chunk à indexer.")
|
|
@@ -314,11 +288,12 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 314 |
vec_dim = len(warmup_vec)
|
| 315 |
job.log(f"Warmup embeddings dim={vec_dim}")
|
| 316 |
|
| 317 |
-
# Collection
|
| 318 |
coll = f"{COLLECTION_PREFIX}{req.project_id}"
|
| 319 |
await ensure_collection(client, coll, vector_size=vec_dim)
|
| 320 |
job.log(f"Collection prête: {coll} (dim={vec_dim})")
|
| 321 |
|
|
|
|
| 322 |
job.stage = "upserting"
|
| 323 |
batch_points: List[Dict[str, Any]] = []
|
| 324 |
|
|
@@ -360,8 +335,29 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 360 |
job.finished_at = time.time()
|
| 361 |
job.log(f"❌ Exception: {e}")
|
| 362 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
# ------------------------------------------------------------------------------
|
| 364 |
-
# FastAPI app
|
| 365 |
# ------------------------------------------------------------------------------
|
| 366 |
fastapi_app = FastAPI(title="Remote Indexer - Minimal Test Space")
|
| 367 |
fastapi_app.add_middleware(
|
|
@@ -378,13 +374,11 @@ async def health():
|
|
| 378 |
@fastapi_app.get("/api")
|
| 379 |
async def api_info():
|
| 380 |
return {
|
| 381 |
-
"ok": True,
|
| 382 |
-
"service": "remote-indexer-min",
|
| 383 |
"qdrant": bool(QDRANT_URL),
|
| 384 |
-
"emb_provider": EMB_PROVIDER,
|
| 385 |
-
"hf_model": HF_EMBED_MODEL,
|
| 386 |
-
"ui_path": UI_PATH,
|
| 387 |
"fallback_to_dummy": EMB_FALLBACK_TO_DUMMY,
|
|
|
|
| 388 |
}
|
| 389 |
|
| 390 |
@fastapi_app.get("/debug/env")
|
|
@@ -399,7 +393,6 @@ async def debug_env():
|
|
| 399 |
"collection_prefix": COLLECTION_PREFIX,
|
| 400 |
}
|
| 401 |
|
| 402 |
-
# Redirige "/" → UI_PATH (ex.: /ui).
|
| 403 |
@fastapi_app.get("/")
|
| 404 |
async def root_redirect():
|
| 405 |
return RedirectResponse(url=UI_PATH, status_code=307)
|
|
@@ -419,12 +412,8 @@ async def wipe(project_id: str = Query(..., min_length=1)):
|
|
| 419 |
async def index(req: IndexRequest):
|
| 420 |
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 421 |
raise HTTPException(status_code=400, detail="QDRANT_URL / QDRANT_API_KEY requis")
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
JOBS[job_id] = job
|
| 425 |
-
asyncio.create_task(run_index_job(job, req))
|
| 426 |
-
job.log(f"Job {job_id} créé pour project {req.project_id}")
|
| 427 |
-
return {"job_id": job_id, "project_id": req.project_id}
|
| 428 |
|
| 429 |
@fastapi_app.get("/status/{job_id}")
|
| 430 |
async def status(job_id: str):
|
|
@@ -453,7 +442,7 @@ async def query(req: QueryRequest):
|
|
| 453 |
return data
|
| 454 |
|
| 455 |
# ------------------------------------------------------------------------------
|
| 456 |
-
# Gradio UI (avec
|
| 457 |
# ------------------------------------------------------------------------------
|
| 458 |
def _default_two_docs() -> List[Dict[str, str]]:
|
| 459 |
a = "Alpha bravo charlie delta echo foxtrot golf hotel india. " * 3
|
|
@@ -462,7 +451,7 @@ def _default_two_docs() -> List[Dict[str, str]]:
|
|
| 462 |
|
| 463 |
async def ui_wipe(project: str):
|
| 464 |
try:
|
| 465 |
-
resp = await wipe(project)
|
| 466 |
return f"✅ Wipe ok — collection {resp['collection']} supprimée."
|
| 467 |
except Exception as e:
|
| 468 |
LOG.exception("wipe UI error")
|
|
@@ -479,10 +468,8 @@ async def ui_index_sample(project: str, chunk_size: int, overlap: int, batch_siz
|
|
| 479 |
store_text=store_text,
|
| 480 |
)
|
| 481 |
try:
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
# On retourne ET le message ET le job_id pour remplir le champ
|
| 485 |
-
return f"🚀 Job lancé: {job_id}", job_id
|
| 486 |
except ValidationError as ve:
|
| 487 |
return f"❌ Payload invalide: {ve}", ""
|
| 488 |
except Exception as e:
|
|
@@ -530,7 +517,7 @@ async def ui_query(project: str, text: str, topk: int):
|
|
| 530 |
LOG.exception("query UI error")
|
| 531 |
return f"❌ Query erreur: {e}"
|
| 532 |
|
| 533 |
-
with gr.Blocks(title="Remote Indexer
|
| 534 |
gr.Markdown("## 🔬 Remote Indexer — Tests sans console\n"
|
| 535 |
"Wipe → Index 2 docs → Status → Count → Query\n"
|
| 536 |
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`)\n"
|
|
@@ -561,21 +548,17 @@ with gr.Blocks(title="Remote Indexer - Minimal Test", analytics_enabled=False) a
|
|
| 561 |
query_btn = gr.Button("🔎 Query")
|
| 562 |
query_out = gr.Textbox(lines=10, label="Résultats Query", interactive=False)
|
| 563 |
|
| 564 |
-
# Liens UI
|
| 565 |
wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log])
|
| 566 |
-
# index renvoie (message, job_id)
|
| 567 |
index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log, jobid_tb])
|
| 568 |
count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log])
|
| 569 |
|
| 570 |
-
# Status bouton manuel
|
| 571 |
status_btn.click(ui_status, inputs=[jobid_tb], outputs=[out_log])
|
| 572 |
-
|
| 573 |
-
# Auto-refresh avec Timer (toutes les 2s si coché)
|
| 574 |
timer = gr.Timer(2.0, active=False)
|
| 575 |
timer.tick(ui_status, inputs=[jobid_tb], outputs=[out_log])
|
| 576 |
auto_chk.change(lambda x: gr.update(active=x), inputs=auto_chk, outputs=timer)
|
| 577 |
|
| 578 |
-
# Monte l'UI Gradio
|
|
|
|
| 579 |
app = gr.mount_gradio_app(fastapi_app, ui, path=UI_PATH)
|
| 580 |
|
| 581 |
if __name__ == "__main__":
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
+
Remote Indexer (HF Space) — Qdrant + embeddings (HF ou dummy)
|
| 4 |
+
Version: worker-thread (pas d'asyncio.create_task dans l'UI), robust logging.
|
| 5 |
|
| 6 |
Endpoints:
|
| 7 |
+
- GET / → redirige vers UI_PATH (défaut: /ui)
|
| 8 |
+
- GET /ui → UI Gradio
|
| 9 |
+
- GET /health → healthcheck
|
| 10 |
+
- GET /api → infos service
|
| 11 |
+
- GET /debug/env → aperçu config (sans secrets)
|
| 12 |
+
- POST /wipe?project_id=XXX
|
| 13 |
+
- POST /index
|
| 14 |
+
- GET /status/{job_id}
|
| 15 |
+
- GET /collections/{project_id}/count
|
| 16 |
+
- POST /query
|
| 17 |
|
| 18 |
ENV:
|
| 19 |
+
- QDRANT_URL, QDRANT_API_KEY (requis pour upsert)
|
| 20 |
+
- COLLECTION_PREFIX (défaut "proj_")
|
| 21 |
+
- EMB_PROVIDER ("hf" | "dummy"; défaut "hf")
|
| 22 |
+
- HF_EMBED_MODEL (défaut "BAAI/bge-m3")
|
| 23 |
+
- HUGGINGFACEHUB_API_TOKEN (si EMB_PROVIDER=hf)
|
| 24 |
+
- EMB_FALLBACK_TO_DUMMY (true/false) → bascule dummy si HF échoue
|
| 25 |
+
- LOG_LEVEL (défaut DEBUG)
|
| 26 |
+
- UI_PATH (défaut "/ui")
|
| 27 |
+
- PORT (défaut 7860)
|
| 28 |
"""
|
| 29 |
|
| 30 |
from __future__ import annotations
|
|
|
|
| 33 |
import uuid
|
| 34 |
import hashlib
|
| 35 |
import logging
|
| 36 |
+
import threading
|
| 37 |
import asyncio
|
| 38 |
from typing import List, Dict, Any, Optional, Tuple
|
| 39 |
|
|
|
|
| 47 |
import gradio as gr
|
| 48 |
|
| 49 |
# ------------------------------------------------------------------------------
|
| 50 |
+
# Config & logs
|
| 51 |
# ------------------------------------------------------------------------------
|
| 52 |
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG").upper()
|
| 53 |
logging.basicConfig(
|
|
|
|
| 60 |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "")
|
| 61 |
COLLECTION_PREFIX = os.getenv("COLLECTION_PREFIX", "proj_").strip() or "proj_"
|
| 62 |
|
| 63 |
+
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "hf").lower()
|
| 64 |
HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3")
|
| 65 |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
|
|
|
| 66 |
EMB_FALLBACK_TO_DUMMY = os.getenv("EMB_FALLBACK_TO_DUMMY", "false").lower() in ("1","true","yes","on")
|
| 67 |
|
| 68 |
+
UI_PATH = os.getenv("UI_PATH", "/ui")
|
| 69 |
|
| 70 |
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 71 |
LOG.warning("QDRANT_URL / QDRANT_API_KEY non fournis : l'upsert échouera.")
|
| 72 |
+
if EMB_PROVIDER == "hf" and not HF_TOKEN and not EMB_FALLBACK_TO_DUMMY:
|
| 73 |
+
LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN (pas de fallback) → préférer EMB_PROVIDER=dummy ou EMB_FALLBACK_TO_DUMMY=true.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# ------------------------------------------------------------------------------
|
| 76 |
+
# Models
|
| 77 |
# ------------------------------------------------------------------------------
|
| 78 |
class FileItem(BaseModel):
|
| 79 |
path: str
|
|
|
|
| 92 |
text: str
|
| 93 |
top_k: int = Field(5, ge=1, le=100)
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
class JobState(BaseModel):
|
| 96 |
job_id: str
|
| 97 |
project_id: str
|
|
|
|
| 114 |
JOBS: Dict[str, JobState] = {}
|
| 115 |
|
| 116 |
# ------------------------------------------------------------------------------
|
| 117 |
+
# Utils
|
| 118 |
# ------------------------------------------------------------------------------
|
| 119 |
def hash8(s: str) -> str:
|
| 120 |
return hashlib.sha256(s.encode("utf-8")).hexdigest()[:16]
|
|
|
|
| 127 |
return arr.astype(np.float32).tolist()
|
| 128 |
|
| 129 |
def flatten_any(x: Any) -> List[float]:
|
|
|
|
| 130 |
if isinstance(x, (list, tuple)):
|
| 131 |
if len(x) > 0 and isinstance(x[0], (list, tuple)):
|
| 132 |
return flatten_any(x[0])
|
|
|
|
| 134 |
raise ValueError("Embedding vector mal formé")
|
| 135 |
|
| 136 |
def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int, str]]:
|
|
|
|
| 137 |
text = text or ""
|
| 138 |
if not text.strip():
|
| 139 |
return []
|
|
|
|
| 151 |
return res
|
| 152 |
|
| 153 |
# ------------------------------------------------------------------------------
|
| 154 |
+
# Qdrant
|
| 155 |
# ------------------------------------------------------------------------------
|
| 156 |
async def ensure_collection(client: httpx.AsyncClient, coll: str, vector_size: int) -> None:
|
|
|
|
| 157 |
url = f"{QDRANT_URL}/collections/{coll}"
|
| 158 |
r = await client.get(url, headers={"api-key": QDRANT_API_KEY}, timeout=20)
|
| 159 |
recreate = False
|
|
|
|
| 191 |
|
| 192 |
async def qdrant_search(client: httpx.AsyncClient, coll: str, vector: List[float], limit: int = 5) -> Dict[str, Any]:
|
| 193 |
url = f"{QDRANT_URL}/collections/{coll}/points/search"
|
| 194 |
+
r = await client.post(url, headers={"api-key": QDRANT_API_KEY}, json={"vector": vector, "limit": limit, "with_payload": True}, timeout=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
if r.status_code != 200:
|
| 196 |
raise HTTPException(status_code=500, detail=f"Qdrant search échoué: {r.text}")
|
| 197 |
return r.json()
|
| 198 |
|
| 199 |
# ------------------------------------------------------------------------------
|
| 200 |
+
# Embeddings
|
| 201 |
# ------------------------------------------------------------------------------
|
| 202 |
def _maybe_prefix_for_model(texts: List[str], model_name: str) -> List[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
m = (model_name or "").lower()
|
| 204 |
if "e5" in m:
|
| 205 |
return [("query: " + t) for t in texts]
|
|
|
|
| 251 |
return embed_dummy(texts, dim=128)
|
| 252 |
|
| 253 |
# ------------------------------------------------------------------------------
|
| 254 |
+
# Core: run_index_job (async) + worker thread wrapper
|
| 255 |
# ------------------------------------------------------------------------------
|
| 256 |
async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
| 257 |
try:
|
|
|
|
| 263 |
f"provider={EMB_PROVIDER} model={HF_EMBED_MODEL}"
|
| 264 |
)
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
# Chunking
|
| 267 |
records: List[Dict[str, Any]] = []
|
| 268 |
for f in req.files:
|
|
|
|
| 276 |
records.append({"payload": payload, "raw": ch})
|
| 277 |
job.total_chunks = len(records)
|
| 278 |
job.log(f"Total chunks = {job.total_chunks}")
|
|
|
|
| 279 |
if job.total_chunks == 0:
|
| 280 |
job.stage = "failed"
|
| 281 |
job.errors.append("Aucun chunk à indexer.")
|
|
|
|
| 288 |
vec_dim = len(warmup_vec)
|
| 289 |
job.log(f"Warmup embeddings dim={vec_dim}")
|
| 290 |
|
| 291 |
+
# Collection
|
| 292 |
coll = f"{COLLECTION_PREFIX}{req.project_id}"
|
| 293 |
await ensure_collection(client, coll, vector_size=vec_dim)
|
| 294 |
job.log(f"Collection prête: {coll} (dim={vec_dim})")
|
| 295 |
|
| 296 |
+
# Upsert
|
| 297 |
job.stage = "upserting"
|
| 298 |
batch_points: List[Dict[str, Any]] = []
|
| 299 |
|
|
|
|
| 335 |
job.finished_at = time.time()
|
| 336 |
job.log(f"❌ Exception: {e}")
|
| 337 |
|
| 338 |
+
def _run_job_in_thread(job: JobState, req: IndexRequest) -> None:
|
| 339 |
+
"""Exécute l'async run_index_job dans un thread dédié avec son propre event loop."""
|
| 340 |
+
def _runner():
|
| 341 |
+
try:
|
| 342 |
+
asyncio.run(run_index_job(job, req))
|
| 343 |
+
except Exception as e:
|
| 344 |
+
job.stage = "failed"
|
| 345 |
+
job.errors.append(str(e))
|
| 346 |
+
job.finished_at = time.time()
|
| 347 |
+
job.log(f"❌ Thread exception: {e}")
|
| 348 |
+
t = threading.Thread(target=_runner, daemon=True)
|
| 349 |
+
t.start()
|
| 350 |
+
|
| 351 |
+
def create_and_start_job(req: IndexRequest) -> JobState:
|
| 352 |
+
job_id = uuid.uuid4().hex[:12]
|
| 353 |
+
job = JobState(job_id=job_id, project_id=req.project_id)
|
| 354 |
+
JOBS[job_id] = job
|
| 355 |
+
job.log(f"Job {job_id} créé pour project {req.project_id}")
|
| 356 |
+
_run_job_in_thread(job, req)
|
| 357 |
+
return job
|
| 358 |
+
|
| 359 |
# ------------------------------------------------------------------------------
|
| 360 |
+
# FastAPI app
|
| 361 |
# ------------------------------------------------------------------------------
|
| 362 |
fastapi_app = FastAPI(title="Remote Indexer - Minimal Test Space")
|
| 363 |
fastapi_app.add_middleware(
|
|
|
|
| 374 |
@fastapi_app.get("/api")
|
| 375 |
async def api_info():
|
| 376 |
return {
|
| 377 |
+
"ok": True, "service": "remote-indexer-min",
|
|
|
|
| 378 |
"qdrant": bool(QDRANT_URL),
|
| 379 |
+
"emb_provider": EMB_PROVIDER, "hf_model": HF_EMBED_MODEL,
|
|
|
|
|
|
|
| 380 |
"fallback_to_dummy": EMB_FALLBACK_TO_DUMMY,
|
| 381 |
+
"ui_path": UI_PATH,
|
| 382 |
}
|
| 383 |
|
| 384 |
@fastapi_app.get("/debug/env")
|
|
|
|
| 393 |
"collection_prefix": COLLECTION_PREFIX,
|
| 394 |
}
|
| 395 |
|
|
|
|
| 396 |
@fastapi_app.get("/")
|
| 397 |
async def root_redirect():
|
| 398 |
return RedirectResponse(url=UI_PATH, status_code=307)
|
|
|
|
| 412 |
async def index(req: IndexRequest):
|
| 413 |
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 414 |
raise HTTPException(status_code=400, detail="QDRANT_URL / QDRANT_API_KEY requis")
|
| 415 |
+
job = create_and_start_job(req)
|
| 416 |
+
return {"job_id": job.job_id, "project_id": job.project_id}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
@fastapi_app.get("/status/{job_id}")
|
| 419 |
async def status(job_id: str):
|
|
|
|
| 442 |
return data
|
| 443 |
|
| 444 |
# ------------------------------------------------------------------------------
|
| 445 |
+
# Gradio UI (avec auto-refresh)
|
| 446 |
# ------------------------------------------------------------------------------
|
| 447 |
def _default_two_docs() -> List[Dict[str, str]]:
|
| 448 |
a = "Alpha bravo charlie delta echo foxtrot golf hotel india. " * 3
|
|
|
|
| 451 |
|
| 452 |
async def ui_wipe(project: str):
|
| 453 |
try:
|
| 454 |
+
resp = await wipe(project)
|
| 455 |
return f"✅ Wipe ok — collection {resp['collection']} supprimée."
|
| 456 |
except Exception as e:
|
| 457 |
LOG.exception("wipe UI error")
|
|
|
|
| 468 |
store_text=store_text,
|
| 469 |
)
|
| 470 |
try:
|
| 471 |
+
job = create_and_start_job(req) # ← lance dans le thread dédié
|
| 472 |
+
return f"🚀 Job lancé: {job.job_id}", job.job_id
|
|
|
|
|
|
|
| 473 |
except ValidationError as ve:
|
| 474 |
return f"❌ Payload invalide: {ve}", ""
|
| 475 |
except Exception as e:
|
|
|
|
| 517 |
LOG.exception("query UI error")
|
| 518 |
return f"❌ Query erreur: {e}"
|
| 519 |
|
| 520 |
+
with gr.Blocks(title="Remote Indexer — Tests sans console", analytics_enabled=False) as ui:
|
| 521 |
gr.Markdown("## 🔬 Remote Indexer — Tests sans console\n"
|
| 522 |
"Wipe → Index 2 docs → Status → Count → Query\n"
|
| 523 |
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`)\n"
|
|
|
|
| 548 |
query_btn = gr.Button("🔎 Query")
|
| 549 |
query_out = gr.Textbox(lines=10, label="Résultats Query", interactive=False)
|
| 550 |
|
|
|
|
| 551 |
wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log])
|
|
|
|
| 552 |
index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log, jobid_tb])
|
| 553 |
count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log])
|
| 554 |
|
|
|
|
| 555 |
status_btn.click(ui_status, inputs=[jobid_tb], outputs=[out_log])
|
|
|
|
|
|
|
| 556 |
timer = gr.Timer(2.0, active=False)
|
| 557 |
timer.tick(ui_status, inputs=[jobid_tb], outputs=[out_log])
|
| 558 |
auto_chk.change(lambda x: gr.update(active=x), inputs=auto_chk, outputs=timer)
|
| 559 |
|
| 560 |
+
# Monte l'UI Gradio
|
| 561 |
+
fastapi_app.mount("/static", gr.routes.App.get_blocks().static_files) # pour servir les assets si nécessaire
|
| 562 |
app = gr.mount_gradio_app(fastapi_app, ui, path=UI_PATH)
|
| 563 |
|
| 564 |
if __name__ == "__main__":
|