DeepIndex / main.py
chouchouvs's picture
Update main.py
ca62f03 verified
raw
history blame
22.2 kB
# -*- coding: utf-8 -*-
"""
FastAPI + Gradio : service d’indexation asynchrone avec FAISS.
Ce fichier a été corrigé pour :
* importer correctement `JobState` (import relatif)
* garantir que le répertoire `app` est dans le PYTHONPATH lorsqu’on lance le script
* conserver toutes les fonctionnalités précédentes (indexation, recherche, UI)
"""
from __future__ import annotations
import os
import io
import json
import time
import hashlib
import logging
import tarfile
import sys
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
from concurrent.futures import ThreadPoolExecutor
import numpy as np
import faiss
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
import gradio as gr
# --------------------------------------------------------------------------- #
# RÉGLAGE DU PYTHONPATH (pour que les imports relatifs fonctionnent)
# --------------------------------------------------------------------------- #
# Si le script est lancé depuis le répertoire `app/`, le package `app` n’est pas
# découvert automatiquement. On ajoute le répertoire parent au sys.path.
CURRENT_DIR = Path(__file__).resolve().parent
PROJECT_ROOT = CURRENT_DIR.parent
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
# --------------------------------------------------------------------------- #
# LOGGING
# --------------------------------------------------------------------------- #
LOG = logging.getLogger("remote-indexer-async")
if not LOG.handlers:
h = logging.StreamHandler()
h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
LOG.addHandler(h)
LOG.setLevel(logging.INFO)
DBG = logging.getLogger("remote-indexer-async.debug")
if not DBG.handlers:
hd = logging.StreamHandler()
hd.setFormatter(logging.Formatter("[DEBUG] %(asctime)s - %(message)s"))
DBG.addHandler(hd)
DBG.setLevel(logging.DEBUG)
# --------------------------------------------------------------------------- #
# CONFIGURATION (variables d’environnement)
# --------------------------------------------------------------------------- #
PORT = int(os.getenv("PORT", "7860"))
DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data")
os.makedirs(DATA_ROOT, exist_ok=True)
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "dummy").strip().lower()
EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/all-mpnet-base-v2").strip()
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))
EMB_DIM = int(os.getenv("EMB_DIM", "64")) # dimension réduite (optimisation)
MAX_WORKERS = int(os.getenv("MAX_WORKERS", "1"))
# --------------------------------------------------------------------------- #
# CACHE DIRECTORIES (évite PermissionError)
# --------------------------------------------------------------------------- #
def _setup_cache_dirs() -> Dict[str, str]:
os.environ.setdefault("HOME", "/home/user")
CACHE_ROOT = os.getenv("CACHE_ROOT", "/tmp/.cache").rstrip("/")
paths = {
"root": CACHE_ROOT,
"hf_home": f"{CACHE_ROOT}/huggingface",
"hf_hub": f"{CACHE_ROOT}/huggingface/hub",
"hf_tf": f"{CACHE_ROOT}/huggingface/transformers",
"torch": f"{CACHE_ROOT}/torch",
"st": f"{CACHE_ROOT}/sentence-transformers",
"mpl": f"{CACHE_ROOT}/matplotlib",
}
for p in paths.values():
try:
os.makedirs(p, exist_ok=True)
except Exception as e:
LOG.warning("Impossible de créer %s : %s", p, e)
os.environ["HF_HOME"] = paths["hf_home"]
os.environ["HF_HUB_CACHE"] = paths["hf_hub"]
os.environ["TRANSFORMERS_CACHE"] = paths["hf_tf"]
os.environ["TORCH_HOME"] = paths["torch"]
os.environ["SENTENCE_TRANSFORMERS_HOME"] = paths["st"]
os.environ["MPLCONFIGDIR"] = paths["mpl"]
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
LOG.info("Caches configurés : %s", json.dumps(paths, indent=2))
return paths
CACHE_PATHS = _setup_cache_dirs()
# --------------------------------------------------------------------------- #
# IMPORT DE LA CLASSE DE STATE (corrigé : import relatif)
# --------------------------------------------------------------------------- #
# Le fichier `index_state.py` se trouve dans `app/core/`.
# En étant dans le répertoire `app`, on peut l’importer via le package `core`.
from core.index_state import JobState # <-- IMPORT CORRIGÉ
# --------------------------------------------------------------------------- #
# GLOBALS
# --------------------------------------------------------------------------- #
JOBS: Dict[str, JobState] = {}
def _now() -> str:
return time.strftime("%H:%M:%S")
def _proj_dirs(project_id: str) -> Tuple[str, str, str]:
base = os.path.join(DATA_ROOT, project_id)
ds_dir = os.path.join(base, "dataset")
fx_dir = os.path.join(base, "faiss")
os.makedirs(ds_dir, exist_ok=True)
os.makedirs(fx_dir, exist_ok=True)
return base, ds_dir, fx_dir
def _add_msg(st: JobState, msg: str) -> None:
st.messages.append(f"[{_now()}] {msg}")
LOG.info("[%s] %s", st.job_id, msg)
DBG.debug("[%s] %s", st.job_id, msg)
def _set_stage(st: JobState, stage: str) -> None:
st.stage = stage
_add_msg(st, f"stage={stage}")
# --------------------------------------------------------------------------- #
# UTILITAIRES (chunking, normalisation, etc.)
# --------------------------------------------------------------------------- #
def _chunk_text(text: str, size: int = 200, overlap: int = 20) -> List[str]:
text = (text or "").replace("\r\n", "\n")
tokens = list(text)
if size <= 0:
return [text] if text else []
if overlap < 0:
overlap = 0
chunks = []
i = 0
while i < len(tokens):
j = min(i + size, len(tokens))
chunk = "".join(tokens[i:j]).strip()
if chunk:
chunks.append(chunk)
if j == len(tokens):
break
i = j - overlap if (j - overlap) > i else j
return chunks
def _l2_normalize(x: np.ndarray) -> np.ndarray:
n = np.linalg.norm(x, axis=1, keepdims=True) + 1e-12
return x / n
# --------------------------------------------------------------------------- #
# EMBEDDING PROVIDERS
# --------------------------------------------------------------------------- #
_ST_MODEL = None
_HF_TOKENIZER = None
_HF_MODEL = None
def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
vecs = np.zeros((len(texts), dim), dtype="float32")
for i, t in enumerate(texts):
h = hashlib.sha1((t or "").encode("utf-8")).digest()
rng = np.random.default_rng(int.from_bytes(h[:8], "little", signed=False))
v = rng.standard_normal(dim).astype("float32")
vecs[i] = v / (np.linalg.norm(v) + 1e-9)
return vecs
def _get_st_model():
global _ST_MODEL
if _ST_MODEL is None:
from sentence_transformers import SentenceTransformer
_ST_MODEL = SentenceTransformer(EMB_MODEL, cache_folder=CACHE_PATHS["st"])
LOG.info("[st] modèle chargé : %s (cache=%s)", EMB_MODEL, CACHE_PATHS["st"])
return _ST_MODEL
def _emb_st(texts: List[str]) -> np.ndarray:
model = _get_st_model()
vecs = model.encode(
texts,
batch_size=max(1, EMB_BATCH),
convert_to_numpy=True,
normalize_embeddings=True,
show_progress_bar=False,
).astype("float32")
return vecs
def _get_hf_model():
global _HF_TOKENIZER, _HF_MODEL
if _HF_MODEL is None or _HF_TOKENIZER is None:
from transformers import AutoTokenizer, AutoModel
_HF_TOKENIZER = AutoTokenizer.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
_HF_MODEL = AutoModel.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
_HF_MODEL.eval()
LOG.info("[hf] modèle chargé : %s (cache=%s)", EMB_MODEL, CACHE_PATHS["hf_tf"])
return _HF_TOKENIZER, _HF_MODEL
def _mean_pool(last_hidden_state: np.ndarray, attention_mask: np.ndarray) -> np.ndarray:
mask = attention_mask[..., None].astype(last_hidden_state.dtype)
summed = (last_hidden_state * mask).sum(axis=1)
counts = mask.sum(axis=1).clip(min=1e-9)
return summed / counts
def _emb_hf(texts: List[str]) -> np.ndarray:
import torch
tok, mod = _get_hf_model()
all_vecs: List[np.ndarray] = []
bs = max(1, EMB_BATCH)
with torch.no_grad():
for i in range(0, len(texts), bs):
batch = texts[i:i + bs]
enc = tok(batch, padding=True, truncation=True, return_tensors="pt")
out = mod(**enc)
last = out.last_hidden_state # (b, t, h)
pooled = _mean_pool(last.numpy(), enc["attention_mask"].numpy())
all_vecs.append(pooled.astype("float32"))
return np.concatenate(all_vecs, axis=0)
# --------------------------------------------------------------------------- #
# DATASET / FAISS I/O
# --------------------------------------------------------------------------- #
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]], store_text: bool = True) -> None:
os.makedirs(ds_dir, exist_ok=True)
data_path = os.path.join(ds_dir, "data.jsonl")
with open(data_path, "w", encoding="utf-8") as f:
for r in rows:
if not store_text:
r = {k: v for k, v in r.items() if k != "text"}
f.write(json.dumps(r, ensure_ascii=False) + "\n")
meta = {"format": "jsonl", "columns": ["path", "text", "chunk_id"], "count": len(rows)}
with open(os.path.join(ds_dir, "meta.json"), "w", encoding="utf-8") as f:
json.dump(meta, f, ensure_ascii=False, indent=2)
def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]:
data_path = os.path.join(ds_dir, "data.jsonl")
if not os.path.isfile(data_path):
return []
out: List[Dict[str, Any]] = []
with open(data_path, "r", encoding="utf-8") as f:
for line in f:
try:
out.append(json.loads(line))
except Exception:
continue
return out
def _save_faiss(fx_dir: str, xb: np.ndarray, meta: Dict[str, Any]) -> None:
os.makedirs(fx_dir, exist_ok=True)
idx_path = os.path.join(fx_dir, "emb.faiss")
# ------------------- INDEX QUANTISÉ (IVF‑PQ) ------------------- #
quantizer = faiss.IndexFlatIP(xb.shape[1]) # inner‑product (cosine si normalisé)
index = faiss.IndexIVFPQ(quantizer, xb.shape[1], 100, 8, 8) # nlist=100, m=8, nbits=8
# entraînement sur un sous‑échantillon (max 10 k vecteurs)
rng = np.random.default_rng(0)
train = xb[rng.choice(xb.shape[0], min(10_000, xb.shape[0]), replace=False)]
index.train(train)
index.add(xb)
faiss.write_index(index, idx_path)
meta.update({"index_type": "IVF_PQ", "nlist": 100, "m": 8, "nbits": 8})
with open(os.path.join(fx_dir, "meta.json"), "w", encoding="utf-8") as f:
json.dump(meta, f, ensure_ascii=False, indent=2)
def _load_faiss(fx_dir: str) -> faiss.Index:
idx_path = os.path.join(fx_dir, "emb.faiss")
if not os.path.isfile(idx_path):
raise FileNotFoundError(f"FAISS index introuvable : {idx_path}")
# mmap → l’index reste sur disque, la RAM n’est utilisée que pour les requêtes
return faiss.read_index(idx_path, faiss.IO_FLAG_MMAP)
def _tar_dir_to_bytes(dir_path: str) -> bytes:
bio = io.BytesIO()
with tarfile.open(fileobj=bio, mode="w:gz", compresslevel=9) as tar:
tar.add(dir_path, arcname=os.path.basename(dir_path))
bio.seek(0)
return bio.read()
# --------------------------------------------------------------------------- #
# THREAD‑POOL (asynchrone)
# --------------------------------------------------------------------------- #
EXECUTOR = ThreadPoolExecutor(max_workers=max(1, MAX_WORKERS))
LOG.info("ThreadPoolExecutor initialisé : max_workers=%s", MAX_WORKERS)
def _do_index_job(
st: JobState,
files: List[Dict[str, str]],
chunk_size: int,
overlap: int,
batch_size: int,
store_text: bool,
) -> None:
"""
Pipeline complet :
1️⃣ Chunking
2️⃣ Embedding (dummy / st / hf)
3️⃣ Réduction de dimension (PCA) si besoin
4️⃣ Sauvegarde du dataset (texte optionnel)
5️⃣ Index FAISS quantisé + mmap
"""
try:
base, ds_dir, fx_dir = _proj_dirs(st.project_id)
# ------------------- 1️⃣ Chunking -------------------
_set_stage(st, "chunking")
rows: List[Dict[str, Any]] = []
st.total_files = len(files)
for f in files:
path = (f.get("path") or "unknown").strip()
txt = f.get("text") or ""
chunks = _chunk_text(txt, size=chunk_size, overlap=overlap)
for i, ck in enumerate(chunks):
rows.append({"path": path, "text": ck, "chunk_id": i})
st.total_chunks = len(rows)
_add_msg(st, f"Total chunks = {st.total_chunks}")
# ------------------- 2️⃣ Embedding -------------------
_set_stage(st, "embedding")
texts = [r["text"] for r in rows]
if EMB_PROVIDER == "dummy":
xb = _emb_dummy(texts, dim=EMB_DIM)
elif EMB_PROVIDER == "st":
xb = _emb_st(texts)
else:
xb = _emb_hf(texts)
# ------------------- 3️⃣ Réduction PCA (si besoin) -------------------
if xb.shape[1] != EMB_DIM:
from sklearn.decomposition import PCA
pca = PCA(n_components=EMB_DIM, random_state=0)
xb = pca.fit_transform(xb).astype("float32")
LOG.info("Réduction PCA appliquée : %d → %d dimensions", xb.shape[1], EMB_DIM)
st.embedded = xb.shape[0]
_add_msg(st, f"Embeddings générés : {st.embedded}")
# ------------------- 4️⃣ Sauvegarde dataset -------------------
_save_dataset(ds_dir, rows, store_text=store_text)
_add_msg(st, f"Dataset sauvegardé dans {ds_dir}")
# ------------------- 5️⃣ Index FAISS -------------------
_set_stage(st, "indexing")
meta = {
"dim": int(xb.shape[1]),
"count": int(xb.shape[0]),
"provider": EMB_PROVIDER,
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None,
}
_save_faiss(fx_dir, xb, meta)
st.indexed = int(xb.shape[0])
_add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}")
_set_stage(st, "done")
st.finished_at = time.time()
except Exception as e:
LOG.exception("Job %s échoué", st.job_id)
st.errors.append(str(e))
_add_msg(st, f"❌ Exception : {e}")
st.stage = "failed"
st.finished_at = time.time()
def _submit_job(
project_id: str,
files: List[Dict[str, str]],
chunk_size: int,
overlap: int,
batch_size: int,
store_text: bool,
) -> str:
job_id = hashlib.sha1(f"{project_id}{time.time()}".encode()).hexdigest()[:12]
st = JobState(job_id=job_id, project_id=project_id, stage="pending", messages=[])
JOBS[job_id] = st
LOG.info("Job %s créé – %d fichiers", job_id, len(files))
EXECUTOR.submit(
_do_index_job,
st,
files,
chunk_size,
overlap,
batch_size,
store_text,
)
st.stage = "queued"
return job_id
# --------------------------------------------------------------------------- #
# FASTAPI
# --------------------------------------------------------------------------- #
fastapi_app = FastAPI(title="remote-indexer-async", version="3.0.0")
fastapi_app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class FileItem(BaseModel):
path: str
text: str
class IndexRequest(BaseModel):
project_id: str
files: List[FileItem]
chunk_size: int = 200
overlap: int = 20
batch_size: int = 32
store_text: bool = True # on peut désactiver via le payload ou env
@fastapi_app.get("/health")
def health():
return {
"ok": True,
"service": "remote-indexer-async",
"provider": EMB_PROVIDER,
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None,
"cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"),
"workers": MAX_WORKERS,
"data_root": DATA_ROOT,
"emb_dim": EMB_DIM,
}
@fastapi_app.post("/index")
def index(req: IndexRequest):
"""
Lancement asynchrone : renvoie immédiatement un `job_id`.
"""
try:
files = [fi.model_dump() for fi in req.files]
job_id = _submit_job(
project_id=req.project_id,
files=files,
chunk_size=int(req.chunk_size),
overlap=int(req.overlap),
batch_size=int(req.batch_size),
store_text=bool(req.store_text),
)
return {"job_id": job_id}
except Exception as e:
LOG.exception("Erreur soumission index")
raise HTTPException(status_code=500, detail=str(e))
@fastapi_app.get("/status/{job_id}")
def status(job_id: str):
st = JOBS.get(job_id)
if not st:
raise HTTPException(status_code=404, detail="job inconnu")
return JSONResponse(st.model_dump())
class SearchRequest(BaseModel):
project_id: str
query: str
k: int = 5
@fastapi_app.post("/search")
def search(req: SearchRequest):
base, ds_dir, fx_dir = _proj_dirs(req.project_id)
# Vérifier que l’index existe
if not (os.path.isfile(os.path.join(fx_dir, "emb.faiss")) and
os.path.isfile(os.path.join(ds_dir, "data.jsonl"))):
raise HTTPException(status_code=409, detail="Index non prêt (reviens plus tard)")
rows = _load_dataset(ds_dir)
if not rows:
raise HTTPException(status_code=404, detail="dataset introuvable")
# Embedding de la requête (même provider que l’index)
if EMB_PROVIDER == "dummy":
q = _emb_dummy([req.query], dim=EMB_DIM)[0:1, :]
elif EMB_PROVIDER == "st":
q = _emb_st([req.query])[0:1, :]
else:
q = _emb_hf([req.query])[0:1, :]
# Recherche FAISS (mmap)
index = _load_faiss(fx_dir)
if index.d != q.shape[1]:
raise HTTPException(
status_code=500,
detail=f"dim incompatibles : index.d={index.d} vs query={q.shape[1]}",
)
scores, ids = index.search(q, int(max(1, req.k)))
ids = ids[0].tolist()
scores = scores[0].tolist()
out = []
for idx, sc in zip(ids, scores):
if idx < 0 or idx >= len(rows):
continue
r = rows[idx]
out.append({"path": r.get("path"), "text": r.get("text"), "score": float(sc)})
return {"results": out}
# --------------------------------------------------------------------------- #
# EXPORT ARTIFACTS (gzip)
# --------------------------------------------------------------------------- #
@fastapi_app.get("/artifacts/{project_id}/dataset")
def download_dataset(project_id: str):
_, ds_dir, _ = _proj_dirs(project_id)
if not os.path.isdir(ds_dir):
raise HTTPException(status_code=404, detail="Dataset introuvable")
buf = _tar_dir_to_bytes(ds_dir)
hdr = {"Content-Disposition": f'attachment; filename="{project_id}_dataset.tgz"'}
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr)
@fastapi_app.get("/artifacts/{project_id}/faiss")
def download_faiss(project_id: str):
_, _, fx_dir = _proj_dirs(project_id)
if not os.path.isdir(fx_dir):
raise HTTPException(status_code=404, detail="FAISS introuvable")
buf = _tar_dir_to_bytes(fx_dir)
hdr = {"Content-Disposition": f'attachment; filename="{project_id}_faiss.tgz"'}
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr)
# --------------------------------------------------------------------------- #
# GRADIO UI (facultatif – test rapide)
# --------------------------------------------------------------------------- #
def _ui_index(project_id: str, sample_text: str):
files = [{"path": "sample.txt", "text": sample_text}]
try:
req = IndexRequest(project_id=project_id, files=[FileItem(**f) for f in files])
except Exception as e:
return f"❌ Validation : {e}"
try:
res = index(req)
return f"✅ Job lancé : {res['job_id']}"
except Exception as e:
return f"❌ Erreur : {e}"
def _ui_search(project_id: str, query: str, k: int):
try:
res = search(SearchRequest(project_id=project_id, query=query, k=int(k)))
return json.dumps(res, ensure_ascii=False, indent=2)
except Exception as e:
return f"❌ Erreur : {e}"
with gr.Blocks(title="Remote Indexer (Async – Optimisé)", analytics_enabled=False) as ui:
gr.Markdown("## Remote Indexer — Async (FAISS quantisé, mmap, texte optionnel)")
with gr.Row():
pid = gr.Textbox(label="Project ID", value="DEMO")
txt = gr.Textbox(label="Texte d’exemple", lines=4, value="Alpha bravo charlie delta echo foxtrot.")
btn_idx = gr.Button("Lancer index (sample)")
out_idx = gr.Textbox(label="Résultat")
btn_idx.click(_ui_index, inputs=[pid, txt], outputs=[out_idx])
with gr.Row():
q = gr.Textbox(label="Query", value="alpha")
k = gr.Slider(1, 20, value=5, step=1, label="Top‑K")
btn_q = gr.Button("Rechercher")
out_q = gr.Code(label="Résultats")
btn_q.click(_ui_search, inputs=[pid, q, k], outputs=[out_q])
# Monte l’UI Gradio sur le même serveur FastAPI
fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui")
# --------------------------------------------------------------------------- #
# MAIN
# --------------------------------------------------------------------------- #
if __name__ == "__main__":
import uvicorn
LOG.info("Démarrage Uvicorn – port %s – UI disponible à /ui", PORT)
uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)