Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def FeedForward(dim, mult=4): | |
inner_dim = int(dim * mult) | |
return nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, inner_dim, bias=False), | |
nn.GELU(), | |
nn.Linear(inner_dim, dim, bias=False), | |
) | |
class PerceiverAttention(nn.Module): | |
def __init__( | |
self, *, dim, dim_head=64, heads=8, dropout_p=0.05, concat_kv_latents=True | |
): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm_x = nn.LayerNorm(dim) | |
self.norm_latents = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
self.dropout_p = dropout_p | |
self.concat_kv_latents = concat_kv_latents | |
def _separate_heads(self, x: torch.Tensor, num_heads: int) -> torch.Tensor: | |
b, n, c = x.shape | |
x = x.reshape(b, n, num_heads, c // num_heads) | |
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head | |
def _recombine_heads(self, x: torch.Tensor) -> torch.Tensor: | |
b, n_heads, n_tokens, c_per_head = x.shape | |
x = x.transpose(1, 2) | |
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C | |
def forward(self, latents, x, pos=None): | |
latents = self.norm_latents(latents) | |
x = self.norm_x(x) | |
q = self.to_q(latents) | |
# the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to | |
if self.concat_kv_latents: | |
kv_input = torch.cat((x, latents), dim=-2) | |
else: | |
kv_input = x | |
k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
q = self._separate_heads(q, self.heads) | |
k = self._separate_heads(k, self.heads) | |
v = self._separate_heads(v, self.heads) | |
if pos is not None: | |
assert not self.concat_kv_latents | |
pos = self._separate_heads(pos, self.heads) | |
k, v = k + pos, v + pos | |
out = F.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=None, | |
dropout_p=self.dropout_p if self.training else 0.0, | |
) | |
out = self._recombine_heads(out) | |
return self.to_out(out) | |
class Attention(nn.Module): | |
def __init__(self, *, dim, dim_head=64, heads=8, dropout_p=0.05): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
self.dropout_p = dropout_p | |
def _separate_heads(self, x: torch.Tensor, num_heads: int) -> torch.Tensor: | |
b, n, c = x.shape | |
x = x.reshape(b, n, num_heads, c // num_heads) | |
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head | |
def _recombine_heads(self, x: torch.Tensor) -> torch.Tensor: | |
b, n_heads, n_tokens, c_per_head = x.shape | |
x = x.transpose(1, 2) | |
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C | |
def forward(self, x): | |
x = self.norm(x) | |
q = self.to_q(x) | |
k, v = self.to_kv(x).chunk(2, dim=-1) | |
q = self._separate_heads(q, self.heads) | |
k = self._separate_heads(k, self.heads) | |
v = self._separate_heads(v, self.heads) | |
out = F.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=None, | |
dropout_p=self.dropout_p if self.training else 0.0, | |
) | |
out = self._recombine_heads(out) | |
return self.to_out(out) | |
class PerceiverEncoderLayer(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_head=64, | |
heads=8, | |
ff_mult=4, | |
hidden_dropout_p=0.0, | |
attention_dropout_p=0.0, | |
concat_kv_latents=False, | |
use_self_attn=False, | |
): | |
super().__init__() | |
self.attn = PerceiverAttention( | |
dim=dim, | |
dim_head=dim_head, | |
heads=heads, | |
dropout_p=attention_dropout_p, | |
concat_kv_latents=concat_kv_latents, | |
) | |
self.ff = FeedForward(dim=dim, mult=ff_mult) | |
self.dropout = nn.Dropout(hidden_dropout_p) | |
self.use_self_attn = use_self_attn | |
if use_self_attn: | |
self.self_attn = Attention( | |
dim=dim, | |
dim_head=dim_head, | |
heads=heads, | |
dropout_p=attention_dropout_p, | |
) | |
self.self_ff = FeedForward(dim=dim, mult=ff_mult) | |
def forward(self, latents, x, pos=None): | |
latents = self.attn(latents, x, pos) + latents | |
latents = self.dropout(latents) | |
latents = self.ff(latents) + latents | |
if self.use_self_attn: | |
latents = self.self_attn(latents) + latents | |
latents = self.self_ff(latents) + latents | |
return latents | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = ( | |
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
) | |
return windows | |
def window_reverse(windows, window_size, H, W): | |
""" | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view( | |
B, H // window_size, W // window_size, window_size, window_size, -1 | |
) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class PerceiverResampler(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
depth, | |
dim_head=64, | |
heads=1, | |
num_latents=-1, | |
num_latents_2d=-1, | |
ff_mult=4, | |
hidden_dropout_p=0.1, | |
attention_dropout_p=0.05, | |
pos_enc_at_key_value=False, | |
concat_kv_latents=False, | |
position_encoding=None, | |
use_self_attn=False, | |
**kwargs, | |
): | |
super().__init__() | |
self.num_latents = num_latents | |
self.num_latents_2d = num_latents_2d | |
if num_latents > 0: | |
self.latents = nn.Parameter(torch.randn(num_latents, dim)) | |
if num_latents_2d > 0: | |
self.latents_2d = nn.Parameter(torch.randn(num_latents_2d, dim)) | |
self.position_encoding = position_encoding | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
PerceiverEncoderLayer( | |
dim=dim, | |
dim_head=dim_head, | |
heads=heads, | |
ff_mult=ff_mult, | |
hidden_dropout_p=hidden_dropout_p, | |
attention_dropout_p=attention_dropout_p, | |
concat_kv_latents=concat_kv_latents, | |
use_self_attn=use_self_attn, | |
), | |
) | |
self.norm = nn.LayerNorm(dim) | |
self.pos_enc_at_key_value = pos_enc_at_key_value | |
def forward(self, x, pos=None): | |
out_latents = [] | |
out_pos = [] | |
if self.num_latents > 0: | |
latents_1d, pos_1d = self.forward_1d(x, pos) | |
out_latents.append(latents_1d) | |
out_pos.append(pos_1d) | |
if self.num_latents_2d > 0: | |
latents_2d, pos_2d = self.forward_2d(x) | |
out_latents.append(latents_2d) | |
out_pos.append(pos_2d) | |
latents = torch.concat(out_latents, dim=1) | |
if pos is not None: | |
pos = torch.concat(out_pos, dim=1) | |
return latents, pos | |
def forward_1d(self, x, pos): | |
latents = self.latents.unsqueeze(0).expand(x.shape[0], -1, -1) | |
x = x.permute(0, 2, 3, 1).flatten(1, 2) | |
if not self.pos_enc_at_key_value: | |
_pos = None | |
if pos is not None: | |
_pos = pos.permute(0, 2, 3, 1).flatten(1, 2) | |
else: | |
_pos = None | |
for layer in self.layers: | |
latents = layer(latents, x, _pos) | |
if pos is not None: | |
pos = torch.zeros_like(latents) | |
latents = self.norm(latents) | |
return latents, pos | |
def forward_2d(self, x): | |
B, C, H, W = x.shape | |
latents_2d = self.latents_2d.unsqueeze(0).expand(B, -1, -1).view(-1, 1, C) | |
num_window = int(math.sqrt(self.num_latents_2d)) | |
window_size = H // num_window | |
x = x.permute(0, 2, 3, 1) | |
x = window_partition(x, window_size) | |
x = x.flatten(1, 2) | |
for layer in self.layers: | |
latents_2d = layer(latents_2d, x) | |
latents_2d = latents_2d.view(B, num_window, num_window, C).permute(0, 3, 1, 2) | |
pos_2d = self.position_encoding(latents_2d) | |
pos_2d = pos_2d.permute(0, 2, 3, 1).flatten(1, 2) | |
latents_2d = latents_2d.permute(0, 2, 3, 1).flatten(1, 2) | |
latents_2d = self.norm(latents_2d) | |
return latents_2d, pos_2d | |