Christoph Holthaus
commited on
Commit
•
3c5e66e
1
Parent(s):
878d5c0
dev - magic
Browse files
app.py
CHANGED
@@ -64,14 +64,6 @@ MAX_MAX_NEW_TOKENS = 2048
|
|
64 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
65 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
if torch.cuda.is_available():
|
71 |
-
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
72 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
73 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
74 |
-
|
75 |
# we need to make sure we only run one thread or we probably run out of ram
|
76 |
def generate(
|
77 |
message: str,
|
@@ -87,34 +79,17 @@ def generate(
|
|
87 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
88 |
conversation.append({"role": "user", "content": message})
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
llm.generate('test')
|
97 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
98 |
-
generate_kwargs = dict(
|
99 |
-
{"input_ids": input_ids},
|
100 |
-
streamer=streamer,
|
101 |
-
max_new_tokens=max_new_tokens,
|
102 |
-
do_sample=True,
|
103 |
-
top_p=top_p,
|
104 |
-
top_k=top_k,
|
105 |
-
temperature=temperature,
|
106 |
-
num_beams=1,
|
107 |
-
repetition_penalty=repetition_penalty,
|
108 |
-
)
|
109 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
110 |
-
t.start()
|
111 |
|
112 |
outputs = []
|
113 |
for text in streamer:
|
114 |
outputs.append(text)
|
115 |
yield "".join(outputs)
|
116 |
|
117 |
-
|
118 |
chat_interface = gr.ChatInterface(
|
119 |
fn=generate,
|
120 |
additional_inputs=[
|
|
|
64 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
65 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# we need to make sure we only run one thread or we probably run out of ram
|
68 |
def generate(
|
69 |
message: str,
|
|
|
79 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
80 |
conversation.append({"role": "user", "content": message})
|
81 |
|
82 |
+
# Use LLaMa to create chat completion
|
83 |
+
llm.create_chat_completion(conversation, stream=True)
|
84 |
+
|
85 |
+
# Initialize a TextIteratorStreamer
|
86 |
+
streamer = TextIteratorStreamer(llm, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
outputs = []
|
89 |
for text in streamer:
|
90 |
outputs.append(text)
|
91 |
yield "".join(outputs)
|
92 |
|
|
|
93 |
chat_interface = gr.ChatInterface(
|
94 |
fn=generate,
|
95 |
additional_inputs=[
|