llava / app.py
Sangmin's picture
Update app.py
bd45a84
import argparse
import datetime
import hashlib
import json
import os
import subprocess
import sys
import time
import gradio as gr
import requests
from llava.constants import LOGDIR
from llava.conversation import SeparatorStyle, conv_templates, default_conversation
from llava.utils import (
build_logger,
moderation_msg,
server_error_msg,
violates_moderation,
)
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "LLaVA Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)
priority = {
"vicuna-13b": "aaaaaaa",
"koala-13b": "aaaaaab",
}
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_model_list():
ret = requests.post(args.controller_url + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(args.controller_url + "/list_models")
models = ret.json()["models"]
models.sort(key=lambda x: priority.get(x, x))
logger.info(f"Models: {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown.update(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown.update(value=model, visible=True)
state = default_conversation.copy()
return state, dropdown_update
def load_demo_refresh_model_list(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = default_conversation.copy()
models_downloaded = True if models else False
model_dropdown_kwargs = {
"choices": [],
"value": "Downloading the models...",
"interactive": models_downloaded,
}
if models_downloaded:
model_dropdown_kwargs["choices"] = models
model_dropdown_kwargs["value"] = models[0]
models_dropdown_update = gr.Dropdown.update(**model_dropdown_kwargs)
send_button_update = gr.Button.update(
interactive=models_downloaded,
)
return state, models_dropdown_update, send_button_update
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, text, image, image_process_mode, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
no_change_btn,
) * 5
text = text[:1536] # Hard cut-off
if image is not None:
text = text[:1200] # Hard cut-off for images
if "<image>" not in text:
# text = '<Image><image></Image>' + text
text = text + "\n<image>"
text = (text, image, image_process_mode)
if len(state.get_images(return_pil=True)) > 0:
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def http_bot(
state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request
):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
# First round of conversation
if "llava" in model_name.lower():
if "llama-2" in model_name.lower():
template_name = "llava_llama_2"
elif "v1" in model_name.lower():
if "mmtag" in model_name.lower():
template_name = "v1_mmtag"
elif (
"plain" in model_name.lower()
and "finetune" not in model_name.lower()
):
template_name = "v1_mmtag"
else:
template_name = "llava_v1"
elif "mpt" in model_name.lower():
template_name = "mpt"
else:
if "mmtag" in model_name.lower():
template_name = "v0_mmtag"
elif (
"plain" in model_name.lower()
and "finetune" not in model_name.lower()
):
template_name = "v0_mmtag"
else:
template_name = "llava_v0"
elif "mpt" in model_name:
template_name = "mpt_text"
elif "llama-2" in model_name:
template_name = "llama_2"
else:
template_name = "vicuna_v1"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Query worker address
controller_url = args.controller_url
ret = requests.post(
controller_url + "/get_worker_address", json={"model": model_name}
)
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
state.messages[-1][-1] = server_error_msg
yield (
state,
state.to_gradio_chatbot(),
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(
LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg"
)
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep
if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT]
else state.sep2,
"images": f"List of {len(state.get_images())} images: {all_image_hash}",
}
logger.info(f"==== request ====\n{pload}")
pload["images"] = state.get_images()
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
response = requests.post(
worker_addr + "/worker_generate_stream",
headers=headers,
json=pload,
stream=True,
timeout=10,
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt) :].strip()
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = """
Image to Text
"""
tos_markdown = """
### Instructions
Upload an image and enter a task such as, "Describe the image in one paragraph".
"""
learn_more_markdown = """
"""
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
def build_demo(embed_mode):
models = get_model_list()
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State(default_conversation.copy())
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if models else "Downloading the models...",
interactive=True if models else False,
show_label=False,
container=False,
)
imagebox = gr.Image(type="pil")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image",
visible=False,
)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples=[
[
f"{cur_dir}/examples/arm_wrestling.png",
"Write one or more sentences that describe the image.",
],
[
f"{cur_dir}/examples/waterview.jpg",
"What are the things I should be cautious about when I visit here?",
],
],
inputs=[imagebox, textbox],
)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=1024,
value=512,
step=64,
interactive=True,
label="Max output tokens",
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot", label="Image Chatbot", height=550
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(
value="Send", variant="primary", interactive=False
)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
flag_btn.click(
flag_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
http_bot,
[state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
clear_btn.click(
clear_history, None, [state, chatbot, textbox, imagebox] + btn_list
)
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
http_bot,
[state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
http_bot,
[state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
if args.model_list_mode == "once":
demo.load(
load_demo,
[url_params],
[state, model_selector],
_js=get_window_url_params,
)
elif args.model_list_mode == "reload":
demo.load(
load_demo_refresh_model_list, None, [state, model_selector, submit_btn]
)
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
return demo
def start_controller():
logger.info("Starting the controller")
controller_command = [
"python",
"-m",
"llava.serve.controller",
"--host",
"0.0.0.0",
"--port",
"10000",
]
return subprocess.Popen(controller_command)
def start_worker(model_path: str, bits=16):
logger.info(f"Starting the model worker for the model {model_path}")
model_name = model_path.strip("/").split("/")[-1]
assert bits in [4, 8, 16], "It can be only loaded with 16-bit, 8-bit, and 4-bit."
if bits != 16:
model_name += f"-{bits}bit"
worker_command = [
"python",
"-m",
"llava.serve.model_worker",
"--host",
"0.0.0.0",
"--controller",
"http://localhost:10000",
"--model-path",
model_path,
"--model-name",
model_name,
]
if bits != 16:
worker_command += [f"--load-{bits}bit"]
return subprocess.Popen(worker_command)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str, default="http://localhost:10000")
parser.add_argument("--concurrency-count", type=int, default=8)
parser.add_argument(
"--model-list-mode", type=str, default="reload", choices=["once", "reload"]
)
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
return args
def start_demo(args):
demo = build_demo(args.embed)
demo.queue(
concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False
).launch(auth=("choibu", "cs1117"), server_name=args.host, server_port=args.port, share=args.share)
if __name__ == "__main__":
args = get_args()
logger.info(f"args: {args}")
model_path = "liuhaotian/llava-v1.5-13b"
bits = int(os.getenv("bits", 8))
controller_proc = start_controller()
worker_proc = start_worker(model_path, bits=bits)
# Wait for worker and controller to start
time.sleep(10)
exit_status = 0
try:
start_demo(args)
except Exception as e:
print(e)
exit_status = 1
finally:
worker_proc.kill()
controller_proc.kill()
sys.exit(exit_status)