Spaces:
No application file
No application file
choi4th4570
commited on
Commit
•
1207ce4
1
Parent(s):
266f469
Upload final - 복사본.py
Browse files- final - 복사본.py +85 -0
final - 복사본.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AdamW
|
2 |
+
import transformers
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from torch.optim import lr_scheduler
|
6 |
+
import torch.optim as optim
|
7 |
+
from accelerate import Accelerator
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import jsonlines
|
11 |
+
import pandas as pd
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
|
15 |
+
from torch.utils.data import Dataset as Dataset2
|
16 |
+
|
17 |
+
from datasets import load_dataset, Dataset, Features, Value
|
18 |
+
|
19 |
+
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model, PeftModel, PeftConfig
|
20 |
+
|
21 |
+
title = "🤖응답하라 챗봇🤖"
|
22 |
+
description = "특정 도메인에 특화된 챗봇"
|
23 |
+
examples = [["특허란 무엇인가요?"], ["자동차에 관한 특허는 무엇이 있나요?"], ]
|
24 |
+
|
25 |
+
def gen(input, history):
|
26 |
+
gened = model.generate(
|
27 |
+
**tokenizer(
|
28 |
+
f"##질문:{input}\n##답변:",
|
29 |
+
return_tensors='pt',
|
30 |
+
return_token_type_ids=False
|
31 |
+
).to('cuda'),
|
32 |
+
max_new_tokens=256,
|
33 |
+
no_repeat_ngram_size=6,
|
34 |
+
# top_p=0.8,
|
35 |
+
temperature=0.7,
|
36 |
+
early_stopping=True,
|
37 |
+
# num_return_sequences=5,
|
38 |
+
do_sample=True,
|
39 |
+
eos_token_id=2,
|
40 |
+
pad_token_id=2
|
41 |
+
)
|
42 |
+
# print(gened[0])
|
43 |
+
return tokenizer.decode(gened[0])
|
44 |
+
|
45 |
+
|
46 |
+
model_root = "polyglot-ko-1.3b-lora-knk"
|
47 |
+
model_name = 'polyglot-ko-1.3b-base-knk'
|
48 |
+
|
49 |
+
# config = LoraConfig(
|
50 |
+
# r=8,
|
51 |
+
# lora_alpha=32, # 32
|
52 |
+
# target_modules=["query_key_value"],
|
53 |
+
# lora_dropout=0.05,
|
54 |
+
# bias="none",
|
55 |
+
# task_type="CAUSAL_LM"
|
56 |
+
# )
|
57 |
+
|
58 |
+
config = PeftConfig.from_pretrained(model_root)
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained('EleutherAI/polyglot-ko-1.3b')
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map={"":0})
|
61 |
+
# model.eval()
|
62 |
+
model = PeftModel.from_pretrained(model, model_root)
|
63 |
+
|
64 |
+
# model = prepare_model_for_kbit_training(model)
|
65 |
+
# model = get_peft_model(model, config)
|
66 |
+
|
67 |
+
model.eval()
|
68 |
+
model.config.use_cache = True # silence the warnings. Please re-enable for inference!
|
69 |
+
|
70 |
+
"""
|
71 |
+
while 1:
|
72 |
+
ques = input('질문:')
|
73 |
+
if ques == '1': break
|
74 |
+
gen(ques)
|
75 |
+
"""
|
76 |
+
demo = gr.ChatInterface(
|
77 |
+
fn=gen,
|
78 |
+
title=title,
|
79 |
+
description=description,
|
80 |
+
examples=examples,
|
81 |
+
theme="xiaobaiyuan/theme_brief",
|
82 |
+
)
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
demo.launch(share=True)
|