Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import os | |
model_id = 'Bllossom/llama-3.2-Korean-Bllossom-3B' | |
# νκ²½ λ³μμμ μ‘μΈμ€ ν ν° κ°μ Έμ€κΈ° | |
hf_access_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
# ν ν¬λμ΄μ μ λͺ¨λΈ λ‘λ | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_id, | |
use_auth_token=hf_access_token | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
use_auth_token=hf_access_token | |
) | |
def respond( | |
message, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# ν둬ννΈ μμ± | |
prompt = system_message + "\n" | |
for user_msg, bot_msg in history: | |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" | |
prompt += f"User: {message}\nAssistant:" | |
# μ λ ₯ ν ν°ν | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# λͺ¨λΈ μλ΅ μμ± | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# μλ΅ λμ½λ© | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = response[len(prompt):].strip() | |
# νμ€ν 리μ μΆκ° | |
history.append((message, response)) | |
return history | |
# Gradio μΈν°νμ΄μ€ μμ± | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly Chatbot.", | |
label="System message" | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |