Spaces:
Paused
Paused
| import { GoogleGenerativeAI, HarmBlockThreshold, HarmCategory } from "@google/generative-ai"; | |
| import type { Content, Part, SafetySetting, TextPart } from "@google/generative-ai"; | |
| import { z } from "zod"; | |
| import type { Message, MessageFile } from "$lib/types/Message"; | |
| import type { TextGenerationStreamOutput } from "@huggingface/inference"; | |
| import type { Endpoint } from "../endpoints"; | |
| import { createImageProcessorOptionsValidator, makeImageProcessor } from "../images"; | |
| import type { ImageProcessorOptions } from "../images"; | |
| import { env } from "$env/dynamic/private"; | |
| export const endpointGenAIParametersSchema = z.object({ | |
| weight: z.number().int().positive().default(1), | |
| model: z.any(), | |
| type: z.literal("genai"), | |
| apiKey: z.string().default(env.GOOGLE_GENAI_API_KEY), | |
| safetyThreshold: z | |
| .enum([ | |
| HarmBlockThreshold.HARM_BLOCK_THRESHOLD_UNSPECIFIED, | |
| HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, | |
| HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, | |
| HarmBlockThreshold.BLOCK_NONE, | |
| HarmBlockThreshold.BLOCK_ONLY_HIGH, | |
| ]) | |
| .optional(), | |
| multimodal: z | |
| .object({ | |
| image: createImageProcessorOptionsValidator({ | |
| supportedMimeTypes: ["image/png", "image/jpeg", "image/webp"], | |
| preferredMimeType: "image/webp", | |
| // The 4 / 3 compensates for the 33% increase in size when converting to base64 | |
| maxSizeInMB: (5 / 4) * 3, | |
| maxWidth: 4096, | |
| maxHeight: 4096, | |
| }), | |
| }) | |
| .default({}), | |
| }); | |
| export function endpointGenAI(input: z.input<typeof endpointGenAIParametersSchema>): Endpoint { | |
| const { model, apiKey, safetyThreshold, multimodal } = endpointGenAIParametersSchema.parse(input); | |
| const genAI = new GoogleGenerativeAI(apiKey); | |
| const safetySettings = safetyThreshold | |
| ? Object.keys(HarmCategory) | |
| .filter((cat) => cat !== HarmCategory.HARM_CATEGORY_UNSPECIFIED) | |
| .reduce((acc, val) => { | |
| acc.push({ | |
| category: val as HarmCategory, | |
| threshold: safetyThreshold, | |
| }); | |
| return acc; | |
| }, [] as SafetySetting[]) | |
| : undefined; | |
| return async ({ messages, preprompt, generateSettings }) => { | |
| const parameters = { ...model.parameters, ...generateSettings }; | |
| const generativeModel = genAI.getGenerativeModel({ | |
| model: model.id ?? model.name, | |
| safetySettings, | |
| generationConfig: { | |
| maxOutputTokens: parameters?.max_new_tokens ?? 4096, | |
| stopSequences: parameters?.stop, | |
| temperature: parameters?.temperature ?? 1, | |
| }, | |
| }); | |
| let systemMessage = preprompt; | |
| if (messages[0].from === "system") { | |
| systemMessage = messages[0].content; | |
| messages.shift(); | |
| } | |
| const genAIMessages = await Promise.all( | |
| messages.map(async ({ from, content, files }: Omit<Message, "id">): Promise<Content> => { | |
| return { | |
| role: from === "user" ? "user" : "model", | |
| parts: [ | |
| ...(await Promise.all( | |
| (files ?? []).map((file) => fileToImageBlock(file, multimodal.image)) | |
| )), | |
| { text: content }, | |
| ], | |
| }; | |
| }) | |
| ); | |
| const result = await generativeModel.generateContentStream({ | |
| contents: genAIMessages, | |
| systemInstruction: | |
| systemMessage && systemMessage.trim() !== "" | |
| ? { | |
| role: "system", | |
| parts: [{ text: systemMessage }], | |
| } | |
| : undefined, | |
| }); | |
| let tokenId = 0; | |
| return (async function* () { | |
| let generatedText = ""; | |
| for await (const data of result.stream) { | |
| if (!data?.candidates?.length) break; // Handle case where no candidates are present | |
| const candidate = data.candidates[0]; | |
| if (!candidate.content?.parts?.length) continue; // Skip if no parts are present | |
| const firstPart = candidate.content.parts.find((part) => "text" in part) as | |
| | TextPart | |
| | undefined; | |
| if (!firstPart) continue; // Skip if no text part is found | |
| const content = firstPart.text; | |
| generatedText += content; | |
| const output: TextGenerationStreamOutput = { | |
| token: { | |
| id: tokenId++, | |
| text: content, | |
| logprob: 0, | |
| special: false, | |
| }, | |
| generated_text: null, | |
| details: null, | |
| }; | |
| yield output; | |
| } | |
| const output: TextGenerationStreamOutput = { | |
| token: { | |
| id: tokenId++, | |
| text: "", | |
| logprob: 0, | |
| special: true, | |
| }, | |
| generated_text: generatedText, | |
| details: null, | |
| }; | |
| yield output; | |
| })(); | |
| }; | |
| } | |
| async function fileToImageBlock( | |
| file: MessageFile, | |
| opts: ImageProcessorOptions<"image/png" | "image/jpeg" | "image/webp"> | |
| ): Promise<Part> { | |
| const processor = makeImageProcessor(opts); | |
| const { image, mime } = await processor(file); | |
| return { | |
| inlineData: { | |
| mimeType: mime, | |
| data: image.toString("base64"), | |
| }, | |
| }; | |
| } | |
| export default endpointGenAI; | |