context-ai / configs /rag_conversations.yaml
chinmayjha's picture
feat: optimize RAG agent with token reduction and separate context/sources
a697e1b unverified
# RAG Configuration for Conversation Data (Agent UI)
# This config matches the settings used to create rag_conversations collection
parameters:
# Collection settings (must match what's in MongoDB)
extract_collection_name: test_conversation_documents
fetch_limit: 0
load_collection_name: rag_conversations # This is what the agent will query
# Retriever settings (must match how embeddings were created)
retriever_type: contextual # Hybrid vector + full-text search
embedding_model_id: text-embedding-3-small # Same as offline pipeline
embedding_model_type: openai
embedding_model_dim: 1536
# These settings are for display/reference only (not used by agent UI)
chunk_size: 640
contextual_summarization_type: contextual
contextual_agent_model_id: gpt-4o-mini
contextual_agent_max_characters: 200
device: mps