|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM3-4B") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("openbmb/MiniCPM3-4B", trust_remote_code=True) |
|
|
|
|
|
def generate_response(input_text): |
|
inputs = tokenizer.encode(input_text, return_tensors="pt") |
|
|
|
outputs = model.generate(inputs, max_length=200, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_response, |
|
inputs="text", |
|
outputs="text", |
|
title="MiniCPM-3 中文聊天机器人", |
|
description="这是一个基于 MiniCPM-3 的简单聊天机器人,可以进行中文对话" |
|
) |
|
|
|
|
|
iface.launch() |
|
|