tiehu3.0 / preprocess_hubert_f0.py
chilge's picture
Duplicate from chilge/cui
8917cb5
raw
history blame
3.2 kB
import os
import argparse
import torch
import json
from glob import glob
from pyworld import pyworld
from tqdm import tqdm
from scipy.io import wavfile
import utils
from mel_processing import mel_spectrogram_torch
#import h5py
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import parselmouth
import librosa
import numpy as np
def get_f0(path,p_len=None, f0_up_key=0):
x, _ = librosa.load(path, 32000)
if p_len is None:
p_len = x.shape[0]//320
else:
assert abs(p_len-x.shape[0]//320) < 3, (path, p_len, x.shape)
time_step = 320 / 32000 * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0 = parselmouth.Sound(x, 32000).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
pad_size=(p_len - len(f0) + 1) // 2
if(pad_size>0 or p_len - len(f0) - pad_size>0):
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
f0bak = f0.copy()
f0 *= pow(2, f0_up_key / 12)
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0bak
def resize2d(x, target_len):
source = np.array(x)
source[source<0.001] = np.nan
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
res = np.nan_to_num(target)
return res
def compute_f0(path, c_len):
x, sr = librosa.load(path, sr=32000)
f0, t = pyworld.dio(
x.astype(np.double),
fs=sr,
f0_ceil=800,
frame_period=1000 * 320 / sr,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, 32000)
for index, pitch in enumerate(f0):
f0[index] = round(pitch, 1)
assert abs(c_len - x.shape[0]//320) < 3, (c_len, f0.shape)
return None, resize2d(f0, c_len)
def process(filename):
print(filename)
save_name = filename+".soft.pt"
if not os.path.exists(save_name):
devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wav, _ = librosa.load(filename, sr=16000)
wav = torch.from_numpy(wav).unsqueeze(0).to(devive)
c = utils.get_hubert_content(hmodel, wav)
torch.save(c.cpu(), save_name)
else:
c = torch.load(save_name)
f0path = filename+".f0.npy"
if not os.path.exists(f0path):
cf0, f0 = compute_f0(filename, c.shape[-1] * 2)
np.save(f0path, f0)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--in_dir", type=str, default="dataset/32k", help="path to input dir")
args = parser.parse_args()
print("Loading hubert for content...")
hmodel = utils.get_hubert_model(0 if torch.cuda.is_available() else None)
print("Loaded hubert.")
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)#[:10]
for filename in tqdm(filenames):
process(filename)