|
import time |
|
|
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from scipy.ndimage import maximum_filter1d, uniform_filter1d |
|
|
|
|
|
def timeit(func): |
|
def run(*args, **kwargs): |
|
t = time.time() |
|
res = func(*args, **kwargs) |
|
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t)) |
|
return res |
|
|
|
return run |
|
|
|
|
|
|
|
def _window_maximum(arr, win_sz): |
|
return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1] |
|
|
|
|
|
|
|
def _window_rms(arr, win_sz): |
|
filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2)) |
|
return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1] |
|
|
|
|
|
def level2db(levels, eps=1e-12): |
|
return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1)) |
|
|
|
|
|
def _apply_slice(audio, begin, end): |
|
if len(audio.shape) > 1: |
|
return audio[:, begin: end] |
|
else: |
|
return audio[begin: end] |
|
|
|
|
|
class Slicer: |
|
def __init__(self, |
|
sr: int, |
|
db_threshold: float = -40, |
|
min_length: int = 5000, |
|
win_l: int = 300, |
|
win_s: int = 20, |
|
max_silence_kept: int = 500): |
|
self.db_threshold = db_threshold |
|
self.min_samples = round(sr * min_length / 1000) |
|
self.win_ln = round(sr * win_l / 1000) |
|
self.win_sn = round(sr * win_s / 1000) |
|
self.max_silence = round(sr * max_silence_kept / 1000) |
|
if not self.min_samples >= self.win_ln >= self.win_sn: |
|
raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s') |
|
if not self.max_silence >= self.win_sn: |
|
raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s') |
|
|
|
@timeit |
|
def slice(self, audio): |
|
samples = audio |
|
if samples.shape[0] <= self.min_samples: |
|
return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}} |
|
|
|
abs_amp = np.abs(samples - np.mean(samples)) |
|
|
|
win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln)) |
|
sil_tags = [] |
|
left = right = 0 |
|
while right < win_max_db.shape[0]: |
|
if win_max_db[right] < self.db_threshold: |
|
right += 1 |
|
elif left == right: |
|
left += 1 |
|
right += 1 |
|
else: |
|
if left == 0: |
|
split_loc_l = left |
|
else: |
|
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2) |
|
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn)) |
|
split_win_l = left + np.argmin(rms_db_left) |
|
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn]) |
|
if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[ |
|
0] - 1: |
|
right += 1 |
|
left = right |
|
continue |
|
if right == win_max_db.shape[0] - 1: |
|
split_loc_r = right + self.win_ln |
|
else: |
|
sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2) |
|
rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln], |
|
win_sz=self.win_sn)) |
|
split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right) |
|
split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn]) |
|
sil_tags.append((split_loc_l, split_loc_r)) |
|
right += 1 |
|
left = right |
|
if left != right: |
|
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2) |
|
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn)) |
|
split_win_l = left + np.argmin(rms_db_left) |
|
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn]) |
|
sil_tags.append((split_loc_l, samples.shape[0])) |
|
if len(sil_tags) == 0: |
|
return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}} |
|
else: |
|
chunks = [] |
|
|
|
if sil_tags[0][0]: |
|
chunks.append({"slice": False, "split_time": f"0,{sil_tags[0][0]}"}) |
|
for i in range(0, len(sil_tags)): |
|
|
|
if i: |
|
chunks.append({"slice": False, "split_time": f"{sil_tags[i - 1][1]},{sil_tags[i][0]}"}) |
|
|
|
chunks.append({"slice": True, "split_time": f"{sil_tags[i][0]},{sil_tags[i][1]}"}) |
|
|
|
if sil_tags[-1][1] != len(audio): |
|
chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1]},{len(audio)}"}) |
|
chunk_dict = {} |
|
for i in range(len(chunks)): |
|
chunk_dict[str(i)] = chunks[i] |
|
return chunk_dict |
|
|
|
|
|
def cut(audio_path, db_thresh=-30, min_len=5000, win_l=300, win_s=20, max_sil_kept=500): |
|
audio, sr = torchaudio.load(audio_path) |
|
if len(audio.shape) == 2 and audio.shape[1] >= 2: |
|
audio = torch.mean(audio, dim=0).unsqueeze(0) |
|
audio = audio.cpu().numpy()[0] |
|
|
|
slicer = Slicer( |
|
sr=sr, |
|
db_threshold=db_thresh, |
|
min_length=min_len, |
|
win_l=win_l, |
|
win_s=win_s, |
|
max_silence_kept=max_sil_kept |
|
) |
|
chunks = slicer.slice(audio) |
|
return chunks |
|
|
|
|
|
def chunks2audio(audio_path, chunks): |
|
chunks = dict(chunks) |
|
audio, sr = torchaudio.load(audio_path) |
|
if len(audio.shape) == 2 and audio.shape[1] >= 2: |
|
audio = torch.mean(audio, dim=0).unsqueeze(0) |
|
audio = audio.cpu().numpy()[0] |
|
result = [] |
|
for k, v in chunks.items(): |
|
tag = v["split_time"].split(",") |
|
result.append((v["slice"], audio[int(tag[0]):int(tag[1])])) |
|
return result, sr |
|
|
|
|
|
|