Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, HTTPException, Query, File, UploadFile | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from sklearn.neighbors import KDTree | |
| import pandas as pd | |
| import numpy as np | |
| from geopy.distance import geodesic | |
| import logging | |
| app = FastAPI() | |
| # 允許所有來源的跨域請求(可以根據需要進行限制) | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], # 可以根據需要限制來源 | |
| allow_credentials=True, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| # 設置日誌 | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| poi_data = None | |
| trees = {} | |
| # 構建KD-tree(不保存到磁碟) | |
| def build_kdtrees(poi_data): | |
| trees = {} | |
| for poi_type, group in poi_data.groupby('poi_type'): | |
| coords = np.array(list(group['coordinates'])) | |
| tree = KDTree(coords, leaf_size=2) | |
| trees[poi_type] = tree | |
| return trees | |
| async def upload_poi(file: UploadFile = File(...)): | |
| global poi_data, trees | |
| try: | |
| poi_data = pd.read_csv(file.file) | |
| poi_data['coordinates'] = list(zip(poi_data.lat, poi_data.lng)) | |
| trees = build_kdtrees(poi_data) | |
| return {"message": "POI data uploaded and KD-trees built successfully"} | |
| except Exception as e: | |
| logger.error(f"An error occurred while processing the uploaded POI data: {e}") | |
| raise HTTPException(status_code=500, detail="An error occurred while processing the uploaded POI data") | |
| def get_nearest_poi(lat: float, lng: float, poi_type: str = Query(...)): | |
| global poi_data, trees | |
| if poi_data is None or trees == {}: | |
| raise HTTPException(status_code=400, detail="POI data not uploaded") | |
| coords = np.array([[lat, lng]]) | |
| if poi_type == "all": | |
| all_pois = [] | |
| # 遍歷所有KD-tree並找出最近的POI | |
| for tree_poi_type, tree in trees.items(): | |
| dist, inds = tree.query(coords, k=10) | |
| for i, distance in enumerate(dist[0]): | |
| poi_candidate = poi_data[poi_data['poi_type'] == tree_poi_type].iloc[inds[0][i]] | |
| candidate_distance = geodesic((lat, lng), (poi_candidate["lat"], poi_candidate["lng"])).meters | |
| all_pois.append({ | |
| "name": poi_candidate["name"], | |
| "poi_type": tree_poi_type, | |
| "distance": round(candidate_distance, 2), | |
| "latitude": poi_candidate["lat"], | |
| "longitude": poi_candidate["lng"] | |
| }) | |
| # 排序所有POI並取前10個 | |
| all_pois = sorted(all_pois, key=lambda x: x["distance"])[:10] | |
| if not all_pois: | |
| raise HTTPException(status_code=404, detail="No POI found") | |
| return all_pois | |
| else: | |
| if poi_type not in trees: | |
| raise HTTPException(status_code=404, detail="Model type not found") | |
| tree = trees[poi_type] | |
| dist, inds = tree.query(coords, k=10) | |
| nearest_pois = [] | |
| for i, distance in enumerate(dist[0]): | |
| nearest_poi = poi_data[poi_data['poi_type'] == poi_type].iloc[inds[0][i]] | |
| distance_m = geodesic((lat, lng), (nearest_poi["lat"], nearest_poi["lng"])).meters | |
| nearest_pois.append({ | |
| "name": nearest_poi["name"], | |
| "poi_type": poi_type, | |
| "distance": round(distance_m, 2), | |
| "latitude": nearest_poi["lat"], | |
| "longitude": nearest_poi["lng"] | |
| }) | |
| return nearest_pois | |
| def clear_kdtrees(): | |
| global poi_data, trees | |
| poi_data = None | |
| trees = {} | |
| return {"message": "KD-trees and POI data cleared successfully"} | |
| # 運行應用 | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=8000) | |