Spaces:
Running
Running
import streamlit as st | |
import streamlit.components.v1 as components | |
from infer_intent import IntentClassifier | |
import matplotlib.pyplot as plt | |
st.set_page_config(layout="wide") | |
st.title("Intent classifier") | |
def get_intent_classifier(): | |
cls = IntentClassifier() | |
return cls | |
cls = get_intent_classifier() | |
query = st.text_input("Enter a query", value="What is the weather today") | |
pred_result, proba_result = cls.find_intent(query) | |
st.markdown(f"prediction = :green[{pred_result}]") | |
keys = list(proba_result.keys()) | |
values = list(proba_result.values()) | |
# Creating the bar plot | |
fig, ax = plt.subplots() | |
ax.barh(keys, values) | |
# Adding labels and title | |
ax.set_xlabel('Intent') | |
ax.set_ylabel('Values') | |
ax.set_title('Intents probability score') | |
col1, col2 = st.columns([2,4]) | |
with col1: | |
st.pyplot(fig) | |
with col2: | |
exp = st.expander("Explore training data") | |
with exp: | |
html_file = "reports/web_search_intents.html" | |
with open(html_file, 'r', encoding='utf-8') as f: | |
plotly_html = f.read() | |
components.html(plotly_html, height=900, width=900) | |