brunorosilva
chore: change repo name
f1a0ba2
from img2art_search.data.dataset import ImageRetrievalDataset
from torch.utils.data import DataLoader
from img2art_search.losses.contrastiveloss import ContrastiveLoss
from img2art_search.data.data import get_data_from_local, split_train_val_test
from img2art_search.data.transforms import transform
from img2art_search.models.model import ViTImageSearchModel
import torch
from torch.optim import Adam
from torch.utils.tensorboard import SummaryWriter
import numpy as np
def fine_tune_vit(epochs, batch_size):
data = get_data_from_local()
train_data, val_data, test_data = split_train_val_test(data, 0.2, 0.1)
np.save("results/test_data", test_data)
train_dataset = ImageRetrievalDataset(train_data, transform=transform)
val_dataset = ImageRetrievalDataset(val_data, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
model = ViTImageSearchModel()
# logs
log_dir = "./logs/"
writer = SummaryWriter(log_dir=log_dir)
# params
criterion = ContrastiveLoss()
optimizer = Adam(model.parameters(), lr=1e-4)
epochs = epochs
for epoch in range(epochs):
model.train()
total_loss = 0
for batch_idx, batch in enumerate(train_loader):
inputs, labels = batch
optimizer.zero_grad()
input_embeddings = model(inputs)
label_embeddings = model(labels)
loss = criterion(input_embeddings, label_embeddings)
loss.backward()
optimizer.step()
total_loss += loss.item()
writer.add_scalar(
"Train Loss", loss.item(), epoch * len(train_loader) + batch_idx
)
avg_train_loss = total_loss / len(train_loader)
writer.add_scalar("Average Train Loss", avg_train_loss, epoch)
print(f"Epoch [{epoch+1}/{epochs}], Loss: {total_loss/len(train_loader)}")
model.eval()
with torch.no_grad():
val_loss = 0
for batch_idx, batch in enumerate(val_loader):
inputs, labels = batch
input_embeddings = model(inputs)
label_embeddings = model(labels)
loss = criterion(input_embeddings, label_embeddings)
val_loss += loss.item()
avg_val_loss = val_loss / len(val_loader)
writer.add_scalar("Validation Loss", avg_val_loss, epoch)
print(f"Validation Loss: {val_loss/len(val_loader)}")
torch.save(model.state_dict(), "results/model.pth")