MeanAudio / meanaudio /runner_meanflow.py
junxiliu's picture
add needed model with proper LFS tracking
3a1da90
import os
import torch
import torch.distributed
from pathlib import Path
from typing import Optional, Union
import torch
import torch.distributed
import torch.optim as optim
from av_bench.evaluate import evaluate
from av_bench.extract import extract
from nitrous_ema import PostHocEMA
from omegaconf import DictConfig
from torch.nn.parallel import DistributedDataParallel as DDP
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import get_mean_audio
from meanaudio.model.sequence_config import CONFIG_16K, CONFIG_44K
from meanaudio.model.utils.features_utils import FeaturesUtils
from meanaudio.model.utils.parameter_groups import get_parameter_groups
from meanaudio.model.utils.sample_utils import log_normal_sample,log_normal_sample_r_t
from meanaudio.utils.dist_utils import (info_if_rank_zero, local_rank, string_if_rank_zero)
from meanaudio.utils.log_integrator import Integrator
from meanaudio.utils.logger import TensorboardLogger
from meanaudio.utils.time_estimator import PartialTimeEstimator, TimeEstimator
import wandb
class RunnerMeanFlow:
def __init__(self,
cfg: DictConfig,
log: TensorboardLogger,
run_path: Union[str, Path],
for_training: bool = True,
latent_mean: Optional[torch.Tensor] = None,
latent_std: Optional[torch.Tensor] = None):
self.exp_id = cfg.exp_id
self.use_amp = cfg.amp
self.enable_grad_scaler = cfg.enable_grad_scaler
self.for_training = for_training
self.cfg = cfg
self.use_wandb = cfg.get("use_wandb", False)
if self.use_wandb and local_rank == 0:
wandb.init(
project = "MeanAudio",
name = cfg.exp_id,
settings=wandb.Settings(init_timeout=120),
# config = cfg
)
# sequence config
self.seq_cfg = CONFIG_16K
mode = '16k'
self.sample_rate = self.seq_cfg.sampling_rate
self.duration_sec = self.seq_cfg.duration
# model
if cfg['text_encoder_name'] == 'clip':
empty_string_feat = torch.load('./weights/empty_string.pth', weights_only=True)[0]
log.info('Loading empty string feature from ./weights/empty_string.pth for CLIP ...')
elif cfg['text_encoder_name'] == 't5':
empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0]
empty_string_feat_c = torch.load('./weights/empty_string_t5_c.pth', weights_only=True)[0]
log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_t5_c.pth for T5')
elif cfg['text_encoder_name'] == 't5_clap':
empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0] # abandon the first (btz) dim.
empty_string_feat_c = torch.load('./weights/empty_string_clap_c.pth', weights_only=True)[0]
log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_clap_c.pth for T5 and CLAP')
elif cfg['text_encoder_name'] == 't5_clap_cat':
empty_string_feat = torch.load('./weights/empty_string_t5.pth', weights_only=True)[0] # abandon the first (btz) dim.
empty_string_feat_c = torch.load('./weights/empty_string_clap_c.pth', weights_only=True)[0]
empty_string_feat_c = torch.cat([empty_string_feat.mean(dim=-2), empty_string_feat_c], dim=-1)
log.info('Loading empty string feature from ./weights/empty_string_t5.pth and ./weights/empty_string_clap_c.pth for T5 and CLAP, concating condition features ... ')
else:
raise NotImplementedError(f'Encoder {cfg["text_encoder_name"]} not implemented')
self.network = DDP(get_mean_audio(cfg.model, # get the model based on base_config.yaml
latent_mean=latent_mean, # mean and std calculated from the dataset
latent_std=latent_std,
empty_string_feat=empty_string_feat,
empty_string_feat_c=empty_string_feat_c,
use_rope=cfg.use_rope,
text_c_dim=cfg.data_dim.text_c_dim).cuda(),
device_ids=[local_rank],
broadcast_buffers=False,
find_unused_parameters=True)
if cfg.compile:
self.train_fn = torch.compile(self.train_fn)
self.val_fn = torch.compile(self.val_fn)
self.mf = MeanFlow()
# ema profile
if for_training and cfg.ema.enable and local_rank == 0:
self.ema = PostHocEMA(self.network.module,
sigma_rels=cfg.ema.sigma_rels,
update_every=cfg.ema.update_every,
checkpoint_every_num_steps=cfg.ema.checkpoint_every,
checkpoint_folder=cfg.ema.checkpoint_folder,
step_size_correction=True).cuda()
self.ema_start = cfg.ema.start
else:
self.ema = None
self.rng = torch.Generator(device='cuda')
self.rng.manual_seed(cfg['seed'] + local_rank)
# setting up feature extractors and VAEs
text_encoder_name = cfg['text_encoder_name']
if mode == '16k':
self.features = FeaturesUtils(
tod_vae_ckpt=cfg['vae_16k_ckpt'],
bigvgan_vocoder_ckpt=cfg['bigvgan_vocoder_ckpt'],
encoder_name=text_encoder_name,
enable_conditions=True,
mode=mode,
need_vae_encoder=False,
)
elif mode == '44k':
self.features = FeaturesUtils(
tod_vae_ckpt=cfg['vae_44k_ckpt'],
encoder_name=text_encoder_name,
enable_conditions=True,
mode=mode,
need_vae_encoder=False,
)
self.features = self.features.cuda().eval()
if cfg.compile:
self.features.compile()
# TODO: change these parameters compatible with meanflow
self.log_normal_sampling_mean = cfg.sampling.mean
self.log_normal_sampling_scale = cfg.sampling.scale
self.null_condition_probability = cfg.null_condition_probability
self.cfg_strength = cfg.cfg_strength
# setting up logging
self.log = log
self.run_path = Path(run_path)
string_if_rank_zero(self.log, 'model_size',
f'{sum([param.nelement() for param in self.network.parameters()])}')
string_if_rank_zero(
self.log, 'number_of_parameters_that_require_gradient: ',
str(
sum([
param.nelement()
for param in filter(lambda p: p.requires_grad, self.network.parameters())
])))
info_if_rank_zero(self.log, 'torch version: ' + torch.__version__)
self.train_integrator = Integrator(self.log, distributed=True)
self.val_integrator = Integrator(self.log, distributed=True)
# setting up optimizer and loss
if for_training:
self.enter_train()
parameter_groups = get_parameter_groups(self.network, cfg, print_log=(local_rank == 0))
self.optimizer = optim.AdamW(parameter_groups,
lr=cfg['learning_rate'],
weight_decay=cfg['weight_decay'],
betas=[0.9, 0.95],
eps=1e-6 if self.use_amp else 1e-8,
fused=True)
if self.enable_grad_scaler:
self.scaler = torch.amp.GradScaler(init_scale=2048)
self.clip_grad_norm = cfg['clip_grad_norm']
# linearly warmup learning rate
linear_warmup_steps = cfg['linear_warmup_steps']
def warmup(currrent_step: int):
return (currrent_step + 1) / (linear_warmup_steps + 1)
warmup_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup)
# setting up learning rate scheduler
if cfg['lr_schedule'] == 'constant':
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda _: 1)
elif cfg['lr_schedule'] == 'poly':
total_num_iter = cfg['iterations']
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer,
lr_lambda=lambda x:
(1 - (x / total_num_iter))**0.9)
elif cfg['lr_schedule'] == 'step':
total_num_iter = cfg['num_iterations']
lr_schedule_steps = [int(0.8 * total_num_iter), int(0.9 * total_num_iter)]
log.info(f'Assigning lr steps: {lr_schedule_steps}')
next_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer,
lr_schedule_steps,
cfg['lr_schedule_gamma'])
else:
raise NotImplementedError
self.scheduler = optim.lr_scheduler.SequentialLR(self.optimizer,
[warmup_scheduler, next_scheduler],
[linear_warmup_steps])
# Logging info
self.log_text_interval = cfg['log_text_interval']
self.log_extra_interval = cfg['log_extra_interval']
self.save_weights_interval = cfg['save_weights_interval']
self.save_checkpoint_interval = cfg['save_checkpoint_interval']
self.save_copy_iterations = cfg['save_copy_iterations']
self.num_iterations = cfg['num_iterations']
# update() is called when we log metrics, within the logger
self.log.batch_timer = TimeEstimator(self.num_iterations, self.log_text_interval)
# update() is called every iteration, in this script
self.log.data_timer = PartialTimeEstimator(self.num_iterations, 1, ema_alpha=0.9)
else:
self.enter_val()
def train_fn(
self,
text_f: torch.Tensor,
text_f_c: torch.Tensor,
a_mean: torch.Tensor,
a_std: torch.Tensor,
# it: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# sample
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
x1 = a_mean + a_std * a_randn
bs = x1.shape[0] # batch_size * seq_len * num_channels
x1 = self.network.module.normalize(x1)
text_f_undrop = text_f
text_f_c_undrop = text_f_c
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text = (samples < self.null_condition_probability)
text_f[null_text] = self.network.module.empty_string_feat
null_text_c = (samples < self.null_condition_probability) # here we do null condition together
text_f_c[null_text_c] = self.network.module.empty_string_feat_c
loss, r, t = self.mf.loss(self.network,
x1,
text_f,
text_f_c,
text_f_undrop,
text_f_c_undrop,
self.network.module.empty_string_feat,
self.network.module.empty_string_feat_c)
mean_loss = loss.mean()
return x1, loss, mean_loss, t, r
def val_fn(
self,
text_f: torch.Tensor,
text_f_c: torch.Tensor,
x1: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
bs = x1.shape[0] # batch_size * seq_len * num_channels
# normalize the latents
x1 = self.network.module.normalize(x1)
text_f_undrop = text_f
text_f_c_undrop = text_f_c
samples = torch.rand(bs, device=x1.device, generator=self.rng)
null_text = (samples < self.null_condition_probability)
text_f[null_text] = self.network.module.empty_string_feat
null_text_c = (samples < self.null_condition_probability)
text_f_c[null_text_c] = self.network.module.empty_string_feat_c
loss, r, t = self.mf.loss(self.network,
x1,
text_f,
text_f_c,
text_f_undrop,
text_f_c_undrop,
self.network.module.empty_string_feat,
self.network.module.empty_string_feat_c)
mean_loss = loss.mean()
return loss, mean_loss, t, r
def train_pass(self, data, it: int = 0):
if not self.for_training:
raise ValueError('train_pass() should not be called when not training.')
self.enter_train()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
text_f = data['text_features'].cuda(non_blocking=True)
text_f_c = data['text_features_c'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True)
a_std = data['a_std'].cuda(non_blocking=True)
self.log.data_timer.end()
if it % self.log_extra_interval == 0:
unmasked_text_f = text_f.clone()
unmasked_text_f_c = text_f_c.clone()
#with torch.amp.autocast('cuda', enabled=False):
x1, loss, mean_loss, t,r = self.train_fn(text_f, text_f_c, a_mean, a_std)
self.train_integrator.add_dict({'loss': mean_loss})
if it % self.log_text_interval == 0 and it != 0:
lr = self.scheduler.get_last_lr()[0]
self.train_integrator.add_scalar('lr', lr)
self.train_integrator.add_binned_tensor('binned_loss', loss, t)
self.train_integrator.finalize('train', it)
self.train_integrator.reset_except_hooks()
if self.use_wandb and local_rank == 0:
wandb.log(
{
"lr": lr,
"train/loss": mean_loss.detach().float()
},
step=it # explicitly x-axis it
)
# Backward pass
self.optimizer.zero_grad(set_to_none=True)
if self.enable_grad_scaler:
self.scaler.scale(mean_loss).backward()
self.scaler.unscale_(self.optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
self.clip_grad_norm)
self.scaler.step(self.optimizer)
self.scaler.update()
else:
mean_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(),
self.clip_grad_norm)
self.optimizer.step()
if self.ema is not None and it >= self.ema_start:
self.ema.update()
self.scheduler.step()
self.integrator.add_scalar('grad_norm', grad_norm)
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp,
dtype=torch.bfloat16), torch.inference_mode():
try:
if it % self.log_extra_interval == 0:
# save GT audio
# unnormalize the latents
x1 = self.network.module.unnormalize(x1[0:1])
mel = self.features.decode(x1)
audio = self.features.vocode(mel).cpu()[0] # 1 * num_samples
self.log.log_spectrogram('train', f'spec-gt-r{local_rank}', mel.cpu()[0], it)
self.log.log_audio('train',
f'audio-gt-r{local_rank}',
audio,
it,
sample_rate=self.sample_rate)
# save audio from sampling
x0 = torch.empty_like(x1[0:1]).normal_(generator=self.rng)
text_f = unmasked_text_f[0:1]
text_f_c = unmasked_text_f_c[0:1] # the first element with same sequence
conditions = self.network.module.preprocess_conditions(text_f, text_f_c)
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
cfg_ode_wrapper = lambda t,r,x: self.network.module.ode_wrapper(
t,r,x, conditions, empty_conditions, self.cfg_strength)
x1_hat = self.mf.to_data(cfg_ode_wrapper, x0)
x1_hat = self.network.module.unnormalize(x1_hat)
mel = self.features.decode(x1_hat)
audio = self.features.vocode(mel).cpu()[0]
self.log.log_spectrogram('train', f'spec-r{local_rank}', mel.cpu()[0], it)
self.log.log_audio('train',
f'audio-r{local_rank}',
audio,
it,
sample_rate=self.sample_rate)
except Exception as e:
self.log.warning(f'Error in extra logging: {e}')
if self.cfg.debug:
raise
# Save network weights and checkpoint if needed
save_copy = it in self.save_copy_iterations
if (it % self.save_weights_interval == 0 and it != 0) or save_copy:
self.save_weights(it)
if it % self.save_checkpoint_interval == 0 and it != 0:
self.save_checkpoint(it, save_copy=save_copy)
self.log.data_timer.start()
@torch.inference_mode()
def validation_pass(self, data, it: int = 0):
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
text_f = data['text_features'].cuda(non_blocking=True)
text_f_c = data['text_features_c'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True)
a_std = data['a_std'].cuda(non_blocking=True)
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng)
x1 = a_mean + a_std * a_randn # differs from train_pass is that validation_pass pass x1 into val_fn
self.log.data_timer.end()
# with torch.amp.autocast('cuda', enabled=False):
loss, mean_loss, t, r = self.val_fn(text_f.clone(), text_f_c.clone(), x1)
self.val_integrator.add_binned_tensor('binned_loss', loss, t)
self.val_integrator.add_dict({'loss': mean_loss})
self.log.data_timer.start()
return mean_loss.detach().float()
@torch.inference_mode()
def inference_pass(self,
data, # batch data
it: int,
data_cfg: DictConfig,
*,
save_eval: bool = True) -> Path:
self.enter_val()
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16):
text_f = data['text_features'].cuda(non_blocking=True)
text_f_c = data['text_features_c'].cuda(non_blocking=True)
a_mean = data['a_mean'].cuda(non_blocking=True) # for the shape only
# sample
x0 = torch.empty_like(a_mean).normal_(generator=self.rng)
conditions = self.network.module.preprocess_conditions(text_f, text_f_c)
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0])
cfg_ode_wrapper = lambda t, r, x: self.network.module.ode_wrapper(
t, r, x, conditions, empty_conditions, self.cfg_strength)
x1_hat = self.mf.to_data(cfg_ode_wrapper, x0)
x1_hat = self.network.module.unnormalize(x1_hat)
mel = self.features.decode(x1_hat)
audio = self.features.vocode(mel).cpu() # (btz, n_samples)
for i in range(audio.shape[0]):
audio_id = data['id'][i]
if data_cfg.output_subdir is not None:
# validation
if save_eval:
iter_naming = f'{it:09d}'
else:
iter_naming = 'val-cache'
audio_dir = self.log.log_audio(iter_naming, # write audios
f'{audio_id}',
audio[i],
it=None,
sample_rate=self.sample_rate,
subdir=Path(data_cfg.output_subdir))
else:
# full test set, usually
audio_dir = self.log.log_audio(f'{data_cfg.tag}-sampled',
f'{audio_id}',
audio[i],
it=None,
sample_rate=self.sample_rate)
del text_f, text_f_c, a_mean
torch.cuda.empty_cache()
return Path(audio_dir)
@torch.inference_mode()
def eval(self, audio_dir: Path, it: int, data_cfg: DictConfig) -> dict[str, float]:
with torch.amp.autocast('cuda', enabled=False):
if local_rank == 0:
extract(audio_path=audio_dir,
output_path=audio_dir / 'cache',
device='cuda',
batch_size=16, # btz=16: avoid OOM
skip_video_related=True, # avoid extracting video related features
audio_length=10)
output_metrics = evaluate(gt_audio_cache=Path(data_cfg.gt_cache),
skip_video_related=True,
pred_audio_cache=audio_dir / 'cache')
for k, v in output_metrics.items():
# pad k to 10 characters
# pad v to 10 decimal places
self.log.log_scalar(f'{data_cfg.tag}/{k}', v, it)
self.log.info(f'{data_cfg.tag}/{k:<10}: {v:.10f}')
if k in ["FD-VGG", "FD-PASST", "FD-PANN", "MS-CLAP-Score",
"LAION-CLAP-Score", "ISC-PANNS-mean", "KL-PANNS-softmax"]:
if self.use_wandb and local_rank == 0:
wandb.log({f'{data_cfg.tag}/{k}': v}, step=it)
else:
output_metrics = None
return output_metrics
def save_weights(self, it, save_copy=False): # only save net's weights
if local_rank != 0:
return
os.makedirs(self.run_path, exist_ok=True)
if save_copy:
model_path = self.run_path / f'{self.exp_id}_{it}.pth'
torch.save(self.network.module.state_dict(), model_path)
self.log.info(f'Network weights saved to {model_path}.')
# if last exists, move it to a shadow copy
model_path = self.run_path / f'{self.exp_id}_last.pth'
if model_path.exists():
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
model_path.replace(shadow_path)
self.log.info(f'Network weights shadowed to {shadow_path}.')
torch.save(self.network.module.state_dict(), model_path)
self.log.info(f'Network weights saved to {model_path}.')
def save_checkpoint(self, it, save_copy=False): # save it, optim, net together
if local_rank != 0:
return
checkpoint = {
'it': it,
'weights': self.network.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'ema': self.ema.state_dict() if self.ema is not None else None,
}
os.makedirs(self.run_path, exist_ok=True)
if save_copy:
model_path = self.run_path / f'{self.exp_id}_ckpt_{it}.pth'
torch.save(checkpoint, model_path)
self.log.info(f'Checkpoint saved to {model_path}.')
# if ckpt_last exists, move it to a shadow copy
model_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
if model_path.exists():
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow'))
model_path.replace(shadow_path) # moves the file
self.log.info(f'Checkpoint shadowed to {shadow_path}.')
torch.save(checkpoint, model_path)
self.log.info(f'Checkpoint saved to {model_path}.')
def get_latest_checkpoint_path(self):
ckpt_path = self.run_path / f'{self.exp_id}_ckpt_last.pth'
if not ckpt_path.exists():
info_if_rank_zero(self.log, f'No checkpoint found at {ckpt_path}.')
return None
return ckpt_path
def get_latest_weight_path(self):
weight_path = self.run_path / f'{self.exp_id}_last.pth'
if not weight_path.exists():
self.log.info(f'No weight found at {weight_path}.')
return None
return weight_path
def get_final_ema_weight_path(self): # for sample (final testing)
weight_path = self.run_path / f'{self.exp_id}_ema_final.pth'
if not weight_path.exists():
self.log.info(f'No weight found at {weight_path}.')
return None
return weight_path
def load_checkpoint(self, path):
# This method loads everything and should be used to resume training
map_location = 'cuda:%d' % local_rank
checkpoint = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
it = checkpoint['it']
weights = checkpoint['weights']
optimizer = checkpoint['optimizer']
scheduler = checkpoint['scheduler']
if self.ema is not None:
self.ema.load_state_dict(checkpoint['ema'])
self.log.info(f'EMA states loaded from step {self.ema.step}')
map_location = 'cuda:%d' % local_rank
self.network.module.load_state_dict(weights) # directly load weights to model
self.optimizer.load_state_dict(optimizer)
self.scheduler.load_state_dict(scheduler)
self.log.info(f'Global iteration {it} loaded.')
self.log.info('Network weights, optimizer states, and scheduler states loaded.')
return it
# def load_checkpoint(self, path):
# self.log.info(f'Loading checkpoint from {path}')
# # This method loads everything and should be used to resume training
# map_location = 'cuda:%d' % local_rank
# checkpoint = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
# it = 0
# # it = checkpoint['it']
# weights = checkpoint['weights'] # this is not ema weights
# #optimizer = checkpoint['optimizer']
# #scheduler = checkpoint['scheduler']
# #self.ema=None
# #if self.ema is not None:
# # self.ema.load_state_dict(checkpoint['ema'])
# # self.log.info(f'EMA states loaded from step {self.ema.step}')
# map_location = 'cuda:%d' % local_rank
# #self.network.module.load_state_dict(weights) # directly load weights to model
# model_weights = weights.copy()
# fallback_mapping = {
# "r_embed.mlp.0.weight":"t_embed.mlp.0.weight",
# "r_embed.mlp.0.bias":"t_embed.mlp.0.bias",
# "r_embed.mlp.2.weight":"t_embed.mlp.2.weight",
# "r_embed.mlp.2.bias": "t_embed.mlp.2.bias"
# }
# for param_name, param in self.network.module.named_parameters():
# if param_name in weights:
# continue
# for target_prefix, source_prefix in fallback_mapping.items():
# if param_name==target_prefix:
# source_name=source_prefix
# print(f"{param_name} not found. Copying from {source_name}")
# model_weights[param_name] = weights[source_name].clone()
# self.network.module.load_state_dict(model_weights, strict=False)
# self.log.info(f'Global iteration {it} loaded.')
# self.log.info('Network weights, optimizer states, and scheduler states loaded.')
# return it
def load_weights_in_memory(self, src_dict):
self.network.module.load_weights(src_dict)
self.log.info('Network weights loaded from memory.')
def load_weights(self, path):
# This method loads only the network weight and should be used to load a pretrained model
map_location = 'cuda:%d' % local_rank
src_dict = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True)
fallback_mapping = {
"r_embed.mlp.0.weight": "t_embed.mlp.0.weight",
"r_embed.mlp.0.bias": "t_embed.mlp.0.bias",
"r_embed.mlp.2.weight": "t_embed.mlp.2.weight",
"r_embed.mlp.2.bias": "t_embed.mlp.2.bias"
}
for target_prefix, source_prefix in fallback_mapping.items():
if target_prefix not in src_dict.keys():
self.log.info(f"Copying from {source_prefix} to {target_prefix}")
src_dict[target_prefix] = src_dict[source_prefix].clone()
self.log.info(f'Importing network weights from {path}...')
self.load_weights_in_memory(src_dict)
def weights(self):
return self.network.module.state_dict()
def enter_train(self):
self.integrator = self.train_integrator
self.network.train()
return self
def enter_val(self):
self.network.eval()
return self