physctrl / src /model /spacetime.py
chenwang's picture
update
4724018
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import sys
sys.path.append('./')
from einops import rearrange, repeat
from model.dit import *
from diffusers.models.embeddings import LabelEmbedding
class PointEmbed(nn.Module):
def __init__(self, hidden_dim=96, dim=512):
super().__init__()
assert hidden_dim % 6 == 0
self.embedding_dim = hidden_dim
e = torch.pow(2, torch.arange(self.embedding_dim // 6)).float() * np.pi
e = torch.stack([
torch.cat([e, torch.zeros(self.embedding_dim // 6),
torch.zeros(self.embedding_dim // 6)]),
torch.cat([torch.zeros(self.embedding_dim // 6), e,
torch.zeros(self.embedding_dim // 6)]),
torch.cat([torch.zeros(self.embedding_dim // 6),
torch.zeros(self.embedding_dim // 6), e]),
])
self.register_buffer('basis', e) # 3 x 16
self.mlp = nn.Linear(self.embedding_dim+3, dim)
@staticmethod
def embed(input, basis):
projections = torch.einsum(
'bnd,de->bne', input, basis)
embeddings = torch.cat([projections.sin(), projections.cos()], dim=2)
return embeddings
def forward(self, input):
# input: B x N x 3
embed = self.mlp(torch.cat([self.embed(input, self.basis), input], dim=2)) # B x N x C
return embed
class AdaLayerNorm(nn.Module):
r"""
Norm layer modified to incorporate timestep embeddings.
Parameters:
embedding_dim (`int`): The size of each embedding vector.
num_embeddings (`int`, *optional*): The size of the embeddings dictionary.
output_dim (`int`, *optional*):
norm_elementwise_affine (`bool`, defaults to `False):
norm_eps (`bool`, defaults to `False`):
chunk_dim (`int`, defaults to `0`):
"""
def __init__(
self,
embedding_dim: int,
num_embeddings: Optional[int] = None,
output_dim: Optional[int] = None,
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-5,
chunk_dim: int = 0,
):
super().__init__()
self.chunk_dim = chunk_dim
output_dim = output_dim or embedding_dim * 2
if num_embeddings is not None:
self.emb = nn.Embedding(num_embeddings, embedding_dim)
else:
self.emb = None
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, output_dim)
self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)
def forward(
self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None
) -> torch.Tensor:
if self.emb is not None:
temb = self.emb(timestep)
temb = self.linear(self.silu(temb))
if self.chunk_dim == 1:
# This is a bit weird why we have the order of "shift, scale" here and "scale, shift" in the
# other if-branch. This branch is specific to CogVideoX for now.
shift, scale = temb.chunk(2, dim=1)
shift = shift[:, None, :]
scale = scale[:, None, :]
else:
scale, shift = temb.chunk(2, dim=0)
x = self.norm(x) * (1 + scale) + shift
return x
@maybe_allow_in_graph
class SpatialTemporalTransformerBlock(nn.Module):
r"""
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`):
The number of channels in each head.
time_embed_dim (`int`):
The number of channels in timestep embedding.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to be used in feed-forward.
attention_bias (`bool`, defaults to `False`):
Whether or not to use bias in attention projection layers.
qk_norm (`bool`, defaults to `True`):
Whether or not to use normalization after query and key projections in Attention.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_eps (`float`, defaults to `1e-5`):
Epsilon value for normalization layers.
final_dropout (`bool` defaults to `False`):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*, defaults to `None`):
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
ff_bias (`bool`, defaults to `True`):
Whether or not to use bias in Feed-forward layer.
attention_out_bias (`bool`, defaults to `True`):
Whether or not to use bias in Attention output projection layer.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
time_embed_dim: int,
dropout: float = 0.0,
activation_fn: str = "gelu-approximate",
attention_bias: bool = False,
qk_norm: bool = True,
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = True,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
# 1. Self Attention
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.attn1 = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
processor=CogVideoXAttnProcessor2_0(),
)
self.norm_temp = AdaLayerNorm(dim, chunk_dim=1)
self.attn_temp = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
)
# 2. Feed Forward
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
temb_in = temb
text_seq_length = encoder_hidden_states.size(1)
B, F, N, C = hidden_states.shape
hidden_states = hidden_states.reshape(-1, N, C)
if encoder_hidden_states.shape[0] != B * F:
encoder_hidden_states = encoder_hidden_states.repeat_interleave(F, 0)
temb = temb_in.repeat_interleave(F, 0)
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
hidden_states, encoder_hidden_states, temb
)
# Spatial Attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
hidden_states, encoder_hidden_states, temb
)
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
## Time Attention
hidden_states = rearrange(hidden_states, '(b f) n c -> (b n) f c', f=F)
temb = temb_in.repeat_interleave(N, 0)
norm_hidden_states = self.norm_temp(hidden_states, temb=temb)
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
hidden_states = rearrange(hidden_states, '(b n) f c -> b f n c', n=N)
# hidden_states = rearrange(hidden_states, '(b f) n c -> b f n c', f=F)
return hidden_states, encoder_hidden_states
@maybe_allow_in_graph
class SpatialOnlyTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
time_embed_dim: int,
dropout: float = 0.0,
activation_fn: str = "gelu-approximate",
attention_bias: bool = False,
qk_norm: bool = True,
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = True,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
# 1. Self Attention
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.attn1 = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
processor=CogVideoXAttnProcessor2_0(),
)
# 2. Feed Forward
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
temb_in = temb
text_seq_length = encoder_hidden_states.size(1)
B, F, N, C = hidden_states.shape
hidden_states = hidden_states.reshape(-1, N, C)
if encoder_hidden_states.shape[0] != B * F:
encoder_hidden_states = encoder_hidden_states.repeat_interleave(F, 0)
temb = temb_in.repeat_interleave(F, 0)
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
hidden_states, encoder_hidden_states, temb
)
# Spatial Attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
hidden_states, encoder_hidden_states, temb
)
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
hidden_states = rearrange(hidden_states, '(b f) n c -> b f n c', f=F)
return hidden_states, encoder_hidden_states
@maybe_allow_in_graph
class TemporalOnlyTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
time_embed_dim: int,
dropout: float = 0.0,
activation_fn: str = "gelu-approximate",
attention_bias: bool = False,
qk_norm: bool = True,
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = True,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
# 1. Self Attention
# self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
# self.attn1 = Attention(
# query_dim=dim,
# dim_head=attention_head_dim,
# heads=num_attention_heads,
# qk_norm="layer_norm" if qk_norm else None,
# eps=1e-6,
# bias=attention_bias,
# out_bias=attention_out_bias,
# processor=CogVideoXAttnProcessor2_0(),
# )
self.norm_temp = AdaLayerNorm(dim, chunk_dim=1)
self.attn_temp = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
)
# 2. Feed Forward
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
temb_in = temb
text_seq_length = encoder_hidden_states.size(1)
B, F, N, C = hidden_states.shape
hidden_states = hidden_states.reshape(-1, N, C)
if encoder_hidden_states.shape[0] != B * F:
encoder_hidden_states = encoder_hidden_states.repeat_interleave(F, 0)
temb = temb_in.repeat_interleave(F, 0)
# # norm & modulate
# norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
# hidden_states, encoder_hidden_states, temb
# )
# # Spatial Attention
# attn_hidden_states, attn_encoder_hidden_states = self.attn1(
# hidden_states=norm_hidden_states,
# encoder_hidden_states=norm_encoder_hidden_states,
# image_rotary_emb=image_rotary_emb,
# )
# hidden_states = hidden_states + gate_msa * attn_hidden_states
# encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
hidden_states, encoder_hidden_states, temb
)
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
## Time Attention
hidden_states = rearrange(hidden_states, '(b f) n c -> (b n) f c', f=F)
temb = temb_in.repeat_interleave(N, 0)
norm_hidden_states = self.norm_temp(hidden_states, temb=temb)
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
hidden_states = rearrange(hidden_states, '(b n) f c -> b f n c', n=N)
# hidden_states = rearrange(hidden_states, '(b f) n c -> b f n c', f=F)
return hidden_states, encoder_hidden_states
@maybe_allow_in_graph
class SpatialTemporalTransformerBlockv2(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
time_embed_dim: int,
dropout: float = 0.0,
activation_fn: str = "gelu-approximate",
attention_bias: bool = False,
qk_norm: bool = True,
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = True,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
# 1. Self Attention
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.attn1 = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
processor=CogVideoXAttnProcessor2_0(),
)
self.norm_temp = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.attn_temp = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
processor=CogVideoXAttnProcessor2_0(),
)
# 2. Feed Forward
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_time: torch.Tensor,
temb: torch.Tensor,
indices: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
temb_in = temb
text_seq_length = encoder_hidden_states.size(1)
B, F, N, C = hidden_states.shape
hidden_states = hidden_states.reshape(-1, N, C)
if encoder_hidden_states.shape[0] != B * F:
encoder_hidden_states = encoder_hidden_states.repeat_interleave(F, 0)
temb = temb_in.repeat_interleave(F, 0)
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
hidden_states, encoder_hidden_states, temb
)
# Spatial Attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
indices=indices,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
hidden_states, encoder_hidden_states, temb
)
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
## Time Attention
hidden_states = rearrange(hidden_states, '(b f) n c -> (b n) f c', f=F)
temb = temb_in.repeat_interleave(N, 0)
norm_hidden_states, norm_encoder_hidden_states_time, gate_msa, enc_gate_msa = self.norm_temp(
hidden_states, encoder_hidden_states_time, temb
)
attn_hidden_states, attn_encoder_hidden_states_time = self.attn_temp(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states_time
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states_time = encoder_hidden_states_time + enc_gate_msa * attn_encoder_hidden_states_time
hidden_states = rearrange(hidden_states, '(b n) f c -> b f n c', n=N)
return hidden_states, encoder_hidden_states, encoder_hidden_states_time
class SpaitalTemporalTransformer(ModelMixin, ConfigMixin, PeftAdapterMixin):
"""
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
Parameters:
num_attention_heads (`int`, defaults to `30`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, defaults to `64`):
The number of channels in each head.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `16`):
The number of channels in the output.
flip_sin_to_cos (`bool`, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
time_embed_dim (`int`, defaults to `512`):
Output dimension of timestep embeddings.
ofs_embed_dim (`int`, defaults to `512`):
Output dimension of "ofs" embeddings used in CogVideoX-5b-I2B in version 1.5
text_embed_dim (`int`, defaults to `4096`):
Input dimension of text embeddings from the text encoder.
num_layers (`int`, defaults to `30`):
The number of layers of Transformer blocks to use.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
attention_bias (`bool`, defaults to `True`):
Whether to use bias in the attention projection layers.
sample_width (`int`, defaults to `90`):
The width of the input latents.
sample_height (`int`, defaults to `60`):
The height of the input latents.
sample_frames (`int`, defaults to `49`):
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
patch_size (`int`, defaults to `2`):
The size of the patches to use in the patch embedding layer.
temporal_compression_ratio (`int`, defaults to `4`):
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
max_text_seq_length (`int`, defaults to `226`):
The maximum sequence length of the input text embeddings.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to use in feed-forward.
timestep_activation_fn (`str`, defaults to `"silu"`):
Activation function to use when generating the timestep embeddings.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether to use elementwise affine in normalization layers.
norm_eps (`float`, defaults to `1e-5`):
The epsilon value to use in normalization layers.
spatial_interpolation_scale (`float`, defaults to `1.875`):
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
temporal_interpolation_scale (`float`, defaults to `1.0`):
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 8,
attention_head_dim: int = 64,
in_channels: int = 3,
out_channels: Optional[int] = 3,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
time_embed_dim: int = 512,
ofs_embed_dim: Optional[int] = None,
text_embed_dim: int = 4096,
num_layers: int = 8,
dropout: float = 0.0,
attention_bias: bool = True,
sample_points: int = 2048,
sample_frames: int = 48,
patch_size: int = 1,
patch_size_t: Optional[int] = None,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
activation_fn: str = "gelu-approximate",
timestep_activation_fn: str = "silu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_positional_embeddings: bool = True,
use_learned_positional_embeddings: bool = False,
patch_bias: bool = True,
cond_seq_length: int = 4,
cond_seq_length_t: int = 2,
transformer_block: str = "SpatialTemporalTransformerBlock",
num_classes: int = 0,
class_dropout_prob: float = 0.0,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
if use_positional_embeddings and use_learned_positional_embeddings:
raise ValueError(
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
"issue at https://github.com/huggingface/diffusers/issues."
)
self.embedding_dropout = nn.Dropout(dropout)
# 2. Time embeddings and ofs embedding(Only CogVideoX1.5-5B I2V have)
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
self.ofs_proj = None
self.ofs_embedding = None
if ofs_embed_dim:
self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift)
self.ofs_embedding = TimestepEmbedding(
ofs_embed_dim, ofs_embed_dim, timestep_activation_fn
) # same as time embeddings, for ofs
self.class_embedder = None
if num_classes > 0:
self.class_embedder = LabelEmbedding(num_classes, time_embed_dim, class_dropout_prob)
self.transformer_block = transformer_block
if transformer_block == "SpatialTemporalTransformerBlock":
TransformerBlock = SpatialTemporalTransformerBlock
elif transformer_block == "SpatialTemporalTransformerBlockv2":
TransformerBlock = SpatialTemporalTransformerBlockv2
elif transformer_block == "SpatialTemporalTransformerBlockv3":
TransformerBlock = SpatialTemporalTransformerBlockv3
elif transformer_block == "SpatialOnlyTransformerBlock":
TransformerBlock = SpatialOnlyTransformerBlock
elif transformer_block == "TemporalOnlyTransformerBlock":
TransformerBlock = TemporalOnlyTransformerBlock
# 3. Define spatio-temporal transformers blocks
self.transformer_blocks = nn.ModuleList(
[
TransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
dropout=dropout,
activation_fn=activation_fn,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
)
for _ in range(num_layers)
]
)
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
# 4. Output blocks
self.norm_out = AdaLayerNorm(
embedding_dim=time_embed_dim,
output_dim=2 * inner_dim,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
chunk_dim=1,
)
if patch_size_t is None:
# For CogVideox 1.0
output_dim = patch_size * patch_size * out_channels
else:
# For CogVideoX 1.5
output_dim = patch_size * patch_size * patch_size_t * out_channels
self.proj_out = nn.Linear(inner_dim, output_dim)
self.gradient_checkpointing = False
if use_positional_embeddings or use_learned_positional_embeddings:
self.embed_dim = num_attention_heads * attention_head_dim
self.cond_seq_length = cond_seq_length
self.cond_seq_length_t = cond_seq_length_t
persistent = use_learned_positional_embeddings
pos_embedding = self._get_positional_embeddings(sample_points, sample_frames)
self.register_buffer("pos_embedding", pos_embedding, persistent=persistent)
def _get_positional_embeddings(self, points: int, frames: int, device: Optional[torch.device] = None) -> torch.Tensor:
pos_embedding = get_3d_sincos_pos_embed(
self.embed_dim,
points,
frames,
device=device,
output_type="pt",
)
pos_embedding = pos_embedding.flatten(0, 1)
joint_pos_embedding = pos_embedding.new_zeros(
1, self.cond_seq_length + points * frames, self.embed_dim, requires_grad=False
)
joint_pos_embedding.data[:, self.cond_seq_length:].copy_(pos_embedding)
return joint_pos_embedding
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def forward(
self,
hidden_states: torch.Tensor, # [batch_size]
encoder_hidden_states: torch.Tensor, # [batch_size]
timestep: Union[int, float, torch.LongTensor],
timestep_cond: Optional[torch.Tensor] = None,
class_labels: Optional[torch.Tensor] = None,
force_drop_ids: Optional[torch.Tensor] = None,
ofs: Optional[Union[int, float, torch.LongTensor]] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
indices: Optional[torch.LongTensor] = None,
return_dict: bool = True,
):
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# 1. Time embedding
timesteps = timestep
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=hidden_states.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
# TODO: check force drop id shape
if self.class_embedder is not None:
assert class_labels is not None
class_labels = self.class_embedder(class_labels, force_drop_ids=force_drop_ids) # (N, D)
emb = emb + class_labels
if self.ofs_embedding is not None:
ofs_emb = self.ofs_proj(ofs)
ofs_emb = ofs_emb.to(dtype=hidden_states.dtype)
ofs_emb = self.ofs_embedding(ofs_emb)
emb = emb + ofs_emb
B, F, N, C = hidden_states.shape
full_seq = torch.cat([encoder_hidden_states, hidden_states.reshape(B, F*N, -1)], axis=1)
# 2. Patch embedding
pos_embedding = self.pos_embedding
pos_embedding = pos_embedding.to(dtype=full_seq.dtype)
hidden_states = full_seq + pos_embedding
hidden_states = self.embedding_dropout(hidden_states)
encoder_hidden_states = hidden_states[:, :self.cond_seq_length]
hidden_states = hidden_states[:, self.cond_seq_length:].reshape(B, F, N, C)
if self.transformer_block not in ["SpatialTemporalTransformerBlock", 'TemporalOnlyTransformerBlock', 'SpatialOnlyTransformerBlock']:
encoder_hidden_states_time = hidden_states[:, :self.cond_seq_length_t]
encoder_hidden_states_time = rearrange(encoder_hidden_states_time, 'b f n c -> (b n) f c')
hidden_states = hidden_states[:, self.cond_seq_length_t:]
# 3. Transformer blocks
for i, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
if self.transformer_block in ["SpatialTemporalTransformerBlock", 'TemporalOnlyTransformerBlock', 'SpatialOnlyTransformerBlock']:
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states, encoder_hidden_states, encoder_hidden_states_time = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
encoder_hidden_states_time,
emb,
image_rotary_emb,
indices=indices,
**ckpt_kwargs,
)
else:
if self.transformer_block in ["SpatialTemporalTransformerBlock", 'TemporalOnlyTransformerBlock', 'SpatialOnlyTransformerBlock']:
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=emb,
image_rotary_emb=image_rotary_emb,
)
else:
hidden_states, encoder_hidden_states, encoder_hidden_states_time = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_time=encoder_hidden_states_time,
temb=emb,
indices=indices,
image_rotary_emb=image_rotary_emb,
)
hidden_states = rearrange(hidden_states, 'b f n c -> b (f n) c')
# 4. Final block
hidden_states = self.norm_final(hidden_states)
hidden_states = self.norm_out(hidden_states, temb=emb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
return output
class MDM_ST(nn.Module):
def __init__(self, n_points, n_frame, n_feats, model_config):
super().__init__()
print('use new model')
self.n_points = n_points
self.n_feats = n_feats
self.latent_dim = model_config.latent_dim
self.cond_frame = 1 if model_config.frame_cond else 0
self.frame_cond = model_config.frame_cond
if model_config.get('point_embed', True):
self.input_encoder = PointEmbed(dim=self.latent_dim)
else:
print('not using point embedding')
self.input_encoder = nn.Linear(n_feats, self.latent_dim)
self.mask_cond = model_config.get('mask_cond', False)
if self.mask_cond:
print('Use mask condition')
self.mask_encoder = nn.Linear(1, self.latent_dim)
self.cond_frame += 1
self.pred_offset = model_config.get('pred_offset', True)
self.num_neighbors = model_config.get('num_neighbors', 0)
self.max_num_forces = model_config.get('max_num_forces', 1)
self.model_config = model_config
self.cond_seq_length = 2
self.E_cond_encoder = nn.Linear(1, self.latent_dim)
self.nu_cond_encoder = nn.Linear(1, self.latent_dim)
self.force_as_token = model_config.get('force_as_token', True)
self.force_as_latent = model_config.get('force_as_latent', False)
if self.force_as_latent:
self.input_encoder = nn.Linear(n_feats + 4 * self.max_num_forces, self.latent_dim)
elif self.force_as_token:
self.cond_seq_length += self.max_num_forces * 2
self.force_cond_encoder = nn.Linear(3, self.latent_dim)
self.drag_point_encoder = nn.Linear(3, self.latent_dim)
else:
self.cond_seq_length += 2
self.force_cond_encoder = nn.Linear(3, self.latent_dim)
self.drag_point_encoder = nn.Linear(3, self.latent_dim)
self.gravity_emb = model_config.get('gravity_emb', False)
if self.gravity_emb:
self.gravity_embedding = nn.Embedding(2, self.latent_dim)
self.cond_seq_length += 1
if self.model_config.floor_cond:
self.floor_encoder = nn.Linear(1, self.latent_dim)
self.cond_seq_length += 1
if self.model_config.coeff_cond:
self.coeff_encoder = nn.Linear(1, self.latent_dim)
self.cond_seq_length += 1
self.num_mat = model_config.get('num_mat', 0)
if model_config.class_token:
self.class_embedding = nn.Embedding(model_config.num_mat, self.latent_dim)
self.cond_seq_length += 1
self.class_dropout_prob = model_config.get('class_dropout_prob', 0.0)
self.dit = SpaitalTemporalTransformer(sample_points=n_points, sample_frames=n_frame+self.cond_frame, in_channels=n_feats,
num_layers=model_config.n_layers, num_attention_heads=self.latent_dim // 64, time_embed_dim=self.latent_dim, cond_seq_length=self.cond_seq_length, cond_seq_length_t=self.cond_frame, transformer_block=model_config.transformer_block, num_classes=self.num_mat, class_dropout_prob=self.class_dropout_prob)
self._init_weights()
def _init_weights(self):
if self.gravity_emb:
nn.init.normal_(self.gravity_embedding.weight, mean=0.0, std=0.1)
def enable_gradient_checkpointing(self):
self.dit._set_gradient_checkpointing(True)
def forward(self, x, timesteps, init_pc, force, E, nu, drag_mask, drag_point, floor_height, gravity_label=None, coeff=None, y=None, null_emb=None):
"""
x: [batch_size, frame, n_points, n_feats], denoted x_t in the paper
timesteps: [batch_size] (int)
"""
bs, n_frame, n_points, n_feats = x.shape
init_pc = init_pc.reshape(bs, n_points, n_feats)
force = force.unsqueeze(1) if force.ndim == 2 else force
drag_point = drag_point.unsqueeze(1) if drag_point.ndim == 2 else drag_point
E = E.unsqueeze(1)
nu = nu.unsqueeze(1)
if self.num_neighbors > 0:
rel_dist = torch.cdist(init_pc, init_pc)
dist, indices = rel_dist.topk(self.num_neighbors, largest = False)
indices = indices.repeat_interleave(n_frame, 0)
# indices = torch.cat([indices, torch.tensor([2048, 2049, 2050, 2051])[None, None].repeat(bs*n_frame, n_points, 1).to(indices.device)], axis=2)
else:
indices = None
if self.force_as_token:
force_emb = self.force_cond_encoder(force) + self.gravity_embedding(gravity_label) if self.gravity_emb else self.force_cond_encoder(force)
encoder_hidden_states = torch.cat([self.E_cond_encoder(E), self.nu_cond_encoder(nu)], axis=1)
# force_info = torch.cat([force, drag_point], dim=-1) # (B, n_forces, 7)
# force_tokens = self.force_cond_encoder(force_info)
encoder_hidden_states = torch.cat([encoder_hidden_states, force_emb, self.drag_point_encoder(drag_point[..., :3])], axis=1)
elif self.force_as_latent:
encoder_hidden_states = torch.cat([self.E_cond_encoder(E), self.nu_cond_encoder(nu)], axis=1)
force = force.unsqueeze(1).repeat(1, n_points, 1, 1) # (B, n_points, n_forces, 3)
all_force = torch.cat([force, drag_mask.permute(0, 2, 1, 3)], dim=-1).reshape(bs, n_points, -1) # (B, n_points, n_forces, 4)
else:
encoder_hidden_states = torch.cat([self.force_cond_encoder(force), self.E_cond_encoder(E),
self.nu_cond_encoder(nu), self.drag_point_encoder(drag_point[..., :3])], axis=1)
if self.gravity_emb:
encoder_hidden_states = torch.cat([encoder_hidden_states, self.gravity_embedding(gravity_label)], axis=1)
if self.model_config.class_token:
class_labels = y.unsqueeze(1)
class_labels = self.class_embedding(class_labels)
encoder_hidden_states = torch.cat([encoder_hidden_states, class_labels], axis=1)
if self.model_config.floor_cond:
floor_height = floor_height.unsqueeze(1) if floor_height is not None else None
encoder_hidden_states = torch.cat([encoder_hidden_states, self.floor_encoder(floor_height)], axis=1)
if self.model_config.coeff_cond:
coeff = coeff.unsqueeze(1) if coeff is not None else None
encoder_hidden_states = torch.cat([encoder_hidden_states, self.coeff_encoder(coeff)], axis=1)
if null_emb is not None:
encoder_hidden_states = encoder_hidden_states * null_emb
if self.frame_cond:
x = torch.cat([init_pc.unsqueeze(1), x], axis=1) # Condition on first frame
if self.force_as_latent:
all_force = all_force.unsqueeze(1).repeat(1, x.shape[1], 1, 1) # (B, n_frame, n_points, n_forces*4)
x = torch.cat([x, all_force], dim=-1) # (B, n_frame, n_points, n_feats+n_forces * 4)
n_feats = x.shape[-1]
hidden_states = self.input_encoder(x.reshape(-1, n_points,
n_feats)).reshape(bs, -1, n_points, self.latent_dim)
if self.mask_cond:
mask = self.mask_encoder(drag_mask[:, :1])
hidden_states = torch.cat([mask, hidden_states], axis=1)
if self.model_config.transformer_block in ["SpatialTemporalTransformerBlock", "TemporalOnlyTransformerBlock", "SpatialOnlyTransformerBlock"]:
output = self.dit(hidden_states, encoder_hidden_states, timesteps, class_labels=y).reshape(bs, -1, n_points, 3)[:, self.cond_frame:]
else:
output = self.dit(hidden_states, encoder_hidden_states, timesteps, indices=indices).reshape(bs, -1, n_points, 3)
output = output + init_pc.unsqueeze(1) if self.pred_offset else output
return output
if __name__ == "__main__":
# Diffusion
from omegaconf import OmegaConf
from options import TestingConfig
cfg_path = '../traj-diff/configs/eval.yaml'
config_path = 'model_config.yaml'
device = 'cuda'
schema = OmegaConf.structured(TestingConfig)
cfg = OmegaConf.load(cfg_path)
cfg = OmegaConf.merge(schema, cfg)
n_training_frames = cfg.train_dataset.n_training_frames
n_frames_interval = cfg.train_dataset.n_frames_interval
point_num = 2048
frame_num = 24
x = torch.randn(1, frame_num, point_num, 3).to(device).to(torch.float16)
timesteps = torch.tensor([999]).int().to(device).to(torch.float16)
init_pc = torch.randn(1, 1, point_num, 3).to(device).to(torch.float16)
force = torch.randn(1, 3).to(device).to(torch.float16)
E = torch.randn(1, 1).to(device).to(torch.float16)
nu = torch.randn(1, 1).to(device).to(torch.float16)
x = nn.Parameter(x)
with torch.enable_grad():
# with torch.no_grad():
t_total = 0
for i in range(100):
model = MDM_ST(point_num, frame_num, 3, cfg.model_config).to(device).to(torch.float16)
model.train()
import time
t0 = time.time()
output = model(x, timesteps, init_pc, force, E, nu, None, force, torch.zeros_like(E), torch.ones_like(E), None)
loss = output.sum()
loss.backward()
t1 = time.time()
if i > 10:
t_total += t1 - t0
print(t1 - t0)
print("Average time: ", t_total / 90)